Properties of Exponents (review)

Activity 1. Fill in the gaps using the following words: power, base, exponent, degree, multiplied An exponent (also called power or \qquad) tells us how many times the base will be \qquad by itself.
For example x^{5} : the \qquad is 5 and the \qquad is x . This means that the variable x will be multiplied by itself 5 times. You can also think of this as 5 to the fifth \qquad .

Activity 2. Complete the following list of properties of exponents:

Properties	General Form	Application	Example
Product Rule Same base add exponents	$a^{m} a^{n}$	a^{m+n}	$x^{5} x^{3}=x^{5+3}=x^{8}$
Quotient Rule Same base subtract exponents	$\frac{a^{m}}{a^{n}}$		$\frac{x^{9}}{x^{5}}=x^{9-5}=x^{4}$
Power Rule I Power raised to a power multiply exponents.	$\left(a^{m}\right)^{n}$		$\left(x^{3}\right)^{4}=x^{3 \cdot 4}=x^{12}$
Power Rule II Product to power distribute to each base	$a^{m} b^{m}$	$\left(4 x^{3}\right)^{2}=4^{2} x^{3 \cdot 2}=16 x^{6}$	
Negative Exponent I Flip and change sign to positive	a^{-m}		$x^{-3}=\frac{1}{x^{3}}$
Negative Exponent II Flip and change sign to positive	$\frac{1}{a^{-m}}$	a^{0}	$a^{0}=1$
Zero Exponent Anything to the zero power (except 0) is one		$\frac{1}{x^{-5}}=x^{5}$	

It is important to note that none of these applications can occur if the bases are not the same.
For example, $\frac{x^{3}}{y^{4}}$ cannot be simplified.

At one point, you may be asked to use a combination of these properties.
Example:

- $\frac{\left(2^{3} y^{2}\right)^{5}}{2^{10} y^{16}}$
\rightarrow Power Rule
- $\frac{2^{3 \cdot 5} y^{2 \cdot 5}}{2^{10} y^{16}}$
- $\frac{2^{15} y^{10}}{2^{10} y^{16}}$
\rightarrow Quotient Rule
- $2^{15-10} y^{10-16}$
- $2^{5} y^{-6}$
\rightarrow Negative Exponent
- $\frac{32}{y^{6}}$

