Using graphs to give estimates

Work in pairs to solve the following problems.

1) Use the graph the function $f(x)=2^{x}$ (you find it in the next page) to give an estimate of the following numbers: if c is the number, find two numbers a and b such that $a<c<b$.
a) $2^{\frac{3}{5}}$
b) $2^{\frac{-3}{2}}$
c) $2^{\frac{1}{3}}$
d) $2^{-\sqrt{2}}$
e) $2^{\sqrt{5}}$

Then check the correctness using a calculator.
2) For each of the following values c, consider the number x such that $2^{x}=c$. Using the same graph, give an estimate of each value x.
a) 3
b) $\frac{3}{2}$
c) $\frac{3}{4}$

Then check the correctness using a calculator.
3) $3^{\sqrt{2}}$ is an irrational number. We want to find its initial five decimal digits using the following procedure.
a) Note that the exponent is $\sqrt{2}=1,414213 \ldots$ (you can find this approximation using a calculator). Consider two sequences of numbers $a_{0}, a_{1}, a_{2}, \ldots, a_{n}, \ldots$ and $b_{0}, b_{1}, b_{2}, \ldots$, b_{n}, \ldots that approximate $\sqrt{2}$ "from below" and "from above", as in the table. Complete the first two columns.

a_{n}	b_{n}	$3^{a_{n}}$	$3^{b_{n}}$
1	2	3	
1,4	1,5	4,65553672	5,19615242
1,41	1,42		
1,414			
	1,4143		
1,414213			

b) Using a calculator compute the powers and complete the last two columns.
c) In the last row the values of $3^{a_{n}}$ and $3^{b_{n}}$ have the initial five decimal digits equal. Can you now answer the initial question?
d) How would you proceed if you wanted to know the initial six decimal digits of $3^{\sqrt{2}}$?

This activity was proposed by Luciano Cappello and Sandro Innocenti.

