An example of exponential decrease: Radioactive decay

Uranium 239 is an unstable isotope of uranium that decays rapidly: this means that it loses some of its mass because of radioactivity. We want to determine the rate of decay. We place 10 grams of U^{239} in a container and measure the amount remaining at 1 -minute intervals. The table records the amounts.

$t=$ time in minutes	$\mathrm{A}(\mathrm{t})=$grams remaining at time t 0
10.00	
2	9.71
2	9.43
3	9.16
4	8.89
5	8.63

Round all your answers to two decimal places.
a) Show that these are exponential data.

Hint: use the characteristic property of exponential functions, that is compute 9.71/10.00, 9.43/9.71 etc. Are the results constant?
b) Find $\mathrm{A}(6)$ that is, A at $\mathrm{t}=6$ minutes.
c) What is the percentage decay rate each minute? Explain in natural language what this number means.
d) * Hard for the moment, optional * Find A at $\mathrm{t}=30$ seconds.
e) Write an exponential function to express A as a function of t (measured in minutes).
f) When is $\mathrm{A}=6.50 \mathrm{~g}$? You can use a spreadsheet to extend the table up to the desired row.
g) The half-life of a radioactive substance is the time required for a quantity to reduce to half of its initial value. What is the half-life of U^{239} ? Use the table as in f).

Solutions

a) because the ratio between $\mathrm{A}(\mathrm{t})$ and $\mathrm{A}(\mathrm{t}-1)$ is always about 0.971
b) 8.38 g
c) $2,9 \%$
d) 9.85
e) $A(t)=0,971^{t}$
f) between 14 and 15 minutes
g) between 23 and 24 minutes

