Final test: Temperature, Heat, Gas Laws, Thermodynamics

1) We all know that when 2 objects at different temperatures are placed in contact after a certain amount of time they will reach the same temperature. How is this process called? Try to explain how it works with your own words.
2) You mix 3 L of water at $94^{\circ} \mathrm{C}$ with 4 Kg of water at $20^{\circ} \mathrm{C}$ and with 200 mL of water at $1^{\circ} \mathrm{C}$. What is the final temperature of the mixture?
3) Near the sea or near a big lake it is warmer than in places in the middle of continents. Why does this happen? Try to explain it in terms of heat capacity and specific heat capacity.
4) What's the minimum quantity of ice (at $0^{\circ} \mathrm{C}$) that you need to cool down 300 mL of ice from $24^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$? (latent heat of fusion of ice $\mathrm{q}_{\mathrm{f}}=3.34 \times 10^{5} \mathrm{~J} / \mathrm{Kg}$, specific heat of water $\left.\mathrm{c}_{\mathrm{s}}=4182 \mathrm{~J} / \mathrm{KgK}\right)$
5) Fill the gaps about Boyle's law:

Boyle's law: When \qquad is held constant, the pressure and volume of a gas are
\qquad proportional.
Mathematically, Boyle's law states: PV = \qquad or $\mathrm{P}_{1} \mathrm{~V}_{1}=$ \qquad .
6) Fill the gaps about Charles' law:

Charles'law: When \qquad is held constant, the volume and temperature of a gas are \qquad proportional.
Mathematically, Charles' law states: V/T = \qquad or $\mathrm{V}_{1} / \mathrm{T}_{1}=$ \qquad .
The \qquad temperature scale must be used in all gas law problems.
7) Fill the gaps about Gay-Lussac's law: Gay-Lussac's law: When \qquad is held constant, the pressure and temperature of a gas are \qquad proportional.
Mathematically, Gay-Lussac's law states: $\mathrm{P} / \mathrm{T}=$ \qquad or $\mathrm{P}_{1} / \mathrm{T}_{1}=$ \qquad .
8) Draw three $\mathrm{P}-\mathrm{V}$ diagrams representing an isothermal, an isobaric and an isochoric process.
9) What is the work done by a gas during an isochoric process?
10) A gas in a cylinder with a piston expands from 0.2 L to 1 L at a constant pressure of 3.2 atm . What kind of process is it? What's the net work done by the gas during the process?
11) Look at the cyclic process in the following figure.
a. What kind of processes are $1,2,3$ and 4 ?
b. What is the net work that can be extracted from this cycle if $\mathrm{P}_{0}=4 \mathrm{~atm}, \mathrm{P}_{\mathrm{f}}=1 \mathrm{~atm}$, $\mathrm{V}_{0}=300 \mathrm{~cm}^{3}, \mathrm{~V}_{\mathrm{f}}=900 \mathrm{~cm}^{3}$?

\qquad /47

