## Final test: Temperature, Heat, Gas Laws, Thermodynamics

| 1) | We all know that when 2 objects at different temperatures are placed in contact after a certain amount of time they will reach the same temperature. How is this process called? Try to explain how it works with your own words. |    |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|    | <i>)</i>                                                                                                                                                                                                                          | /5 |
| 2) | You mix 3 L of water at 94°C with 4 Kg of water at 20°C and with 200 mL of water at 1°C. What is the final temperature of the mixture?                                                                                            |    |
|    | <i>)</i>                                                                                                                                                                                                                          | /2 |
| 3) | Near the sea or near a big lake it is warmer than in places in the middle of continents. Who does this happen? Try to explain it in terms of heat capacity and specific heat capacity.                                            | У  |
|    | <i>j</i>                                                                                                                                                                                                                          | /5 |
| 4) | What's the minimum quantity of ice (at 0°C) that you need to cool down 300 mL of ice from 24°C to 0°C? (latent heat of fusion of ice $q_f$ = 3.34 × 10 <sup>5</sup> J/Kg, specific heat of water $c_s$ = 4182 J/KgK)              |    |
|    | /                                                                                                                                                                                                                                 | /4 |
| 5) | Fill the gaps about Boyle's law:  Boyle's law: When is held constant, the pressure and volume of a gas are proportional.  Mathematically, Boyle's law states: PV = or P <sub>1</sub> V <sub>1</sub> =                             |    |
|    | /                                                                                                                                                                                                                                 | /4 |
| 6) | Fill the gaps about Charles' law: Charles' law: When is held constant, the volume and temperature of a gas are proportional. Mathematically, Charles' law states: $V/T = $ or $V_1/T_1 = $                                        |    |
|    | The temperature scale must be used in all gas law problems                                                                                                                                                                        | /5 |

7) Fill the gaps about Gay-Lussac's law:

Gay-Lussac's law: When \_\_\_\_\_\_ is held constant, the pressure and temperature of a gas are \_\_\_\_\_ proportional.

Mathematically, Gay-Lussac's law states:  $P/T = or P_1/T_1 = ...$ 

...../4

8) Draw three P-V diagrams representing an isothermal, an isobaric and an isochoric process.

...../6

9) What is the work done by a gas during an isochoric process?

...../2

10) A gas in a cylinder with a piston expands from 0.2 L to 1 L at a constant pressure of 3.2 atm. What kind of process is it? What's the net work done by the gas during the process?

...../4

- 11) Look at the cyclic process in the following figure.
  - a. What kind of processes are 1, 2, 3 and 4?
  - b. What is the net work that can be extracted from this cycle if  $P_0$  = 4 atm,  $P_f$  = 1 atm,  $V_0$  = 300 cm<sup>3</sup>,  $V_f$  = 900 cm<sup>3</sup>?



...../6