ISOTHERMAL, ISOBARIC AND ISOCHORIC PROCESSES

TASK 1 – FILL IN THE GAPS

Boyle's Law¹

WORDS: volume, substance, pressure, Robert Boyle, inversely proportional, volume temperature, constant, fixed, Boyle-Mariotte.

Boyle's law, sometimes referred to as the		law, describes the
	relationship between pres	ssure and of a
gas, if the	and amount of	are kept within a
closed system. The law was who published the original	s named after chemist and law in 1662.	physicist,

The law itself can be stated as follows: For a ______ amount of an ideal gas kept at a fixed temperature, ______ and _____ are inversely proportional.

TASK 2 – FILL IN THE GAPS

Charles' law²

WORDS: volume, decrease, constant, temperature, absolute temperature, pressure, volume, expands, direct, experimental, volume

Charles' law is an	gas law	. French physicist Charles	studied the
effect of	on the	of a gas at cons	stant pressure.
This law describes ho	ow a gas	when the temperature	increases;
conversely, a in temperature will cause a decrease in the			the
·			
Formally, Charles' lav	v states: When the	on a sample of	a dry gas is
held,	the	and the	are
going to be in	proportion.		

¹ Text from: https://aula44.files.wordpress.com/2009/09/activities-1-unit-2-3c2ba-eso.pdf

² Text modified from: https://www.toppr.com/guides/chemistry-formulas/charles-law-formula/

TASK 3 – FILL IN THE GAPS

Gay-Lussac's law³

WORDS: pressure, relationship, striking, kinetic energy, flexible, directly, container, greater, rigid, temperature, volume, Gay-Lussac, absolute temperature, molecules, constant, increased

When the	of a sample of gas in a rigid container is,			
the of	the gas increases as w	e gas increases as well. The increase in		
results in the	of gas	the walls of the	e container with	
more force, resulting	in a pre	pressure. The French chemist Joseph		
	(1778-1850) disco	vered the	between	
the pressure of a gas	kept at	volume and its		

Gay-Lussac's Law states that the pressure of a given mass of gas varies ______ with the absolute temperature of the gas, when the ______ is kept constant. Gay-Lussac's Law is very similar to Charles's Law, with the only difference being the type of ______. Whereas the container in a Charles's Law experiment is ______, it is ______ in a Gay-Lussac's Law experiment.

³ Text modified from: https://chem.libretexts.org/Bookshelves/Introductory_Chemistry/Introductory_Chemistry_(CK-12)/14%3A_The_Behavior_of_Gases/14.05%3A_Gay-Lussac's_Law

TASK 4 – ASSIGN THE RIGHT CHARACTERISTICS

(Some characteristics can be assigned to more than 1 process)

CHARACTERISTICS: constant volume, $\frac{P}{T} = \text{constant}$, volume change, Boyle-Mariotte, Gay-Lussac, pressure change, $\frac{V}{T} = \text{constant}$, constant pressure, Charles, constant temperature, PV = constant, heat transfer.

ISOTHERMAL PROCESS	ISOBARIC PROCESS	ISOCHORIC PROCESS