## ISOTHERMAL, ISOBARIC AND ISOCHORIC PROCESSES

## TASK 1 - FILL IN THE GAPS

## Boyle's Law ${ }^{1}$

WORDS: volume, substance, pressure, Robert Boyle, inversely proportional, volume temperature, constant, fixed, Boyle-Mariotte.

Boyle's law, sometimes referred to as the $\qquad$ law, describes the
$\qquad$ relationship between pressure and $\qquad$ of a
gas, if the $\qquad$ and amount of $\qquad$ are kept within a closed system. The law was named after chemist and physicist $\qquad$ , who published the original law in 1662.

The law itself can be stated as follows: For a $\qquad$ amount of an ideal gas kept at a fixed temperature, $\qquad$ and $\qquad$ are inversely proportional.

## TASK 2 - FILL IN THE GAPS

Charles' law ${ }^{2}$

WORDS: volume, decrease, constant, temperature, absolute temperature, pressure, volume, expands, direct, experimental, volume

Charles' law is an $\qquad$ gas law. French physicist Charles studied the effect of $\qquad$ on the $\qquad$ of a gas at constant pressure.
This law describes how a gas $\qquad$ when the temperature increases; conversely, a $\qquad$ in temperature will cause a decrease in the
$\qquad$ .

Formally, Charles' law states: When the $\qquad$ on a sample of a dry gas is held $\qquad$ , the $\qquad$ and the $\qquad$ are
going to be in $\qquad$ proportion.

[^0]
## TASK 3 - FILL IN THE GAPS

## Gay-Lussac's law ${ }^{3}$

WORDS: pressure, relationship, striking, kinetic energy, flexible, directly, container, greater, rigid, temperature, volume, Gay-Lussac, absolute temperature, molecules, constant, increased

When the $\qquad$ of a sample of gas in a rigid container is $\qquad$ , the $\qquad$ of the gas increases as well. The increase in $\qquad$ results in the $\qquad$ of gas $\qquad$ the walls of the container with more force, resulting in a $\qquad$ pressure. The French chemist Joseph
(1778-1850) discovered the $\qquad$ between the pressure of a gas kept at $\qquad$ volume and its $\qquad$ .

Gay-Lussac's Law states that the pressure of a given mass of gas varies $\qquad$ with the absolute temperature of the gas, when the $\qquad$ is kept constant. Gay-Lussac's Law is very similar to Charles's Law, with the only difference being the type of $\qquad$ Whereas the container in a Charles's Law experiment is
$\qquad$ it is $\qquad$ in a Gay-Lussac's Law experiment.

[^1]TASK 4 - ASSIGN THE RIGHT CHARACTERISTICS
(Some characteristics can be assigned to more than 1 process)
CHARACTERISTICS: constant volume, $\frac{\boldsymbol{P}}{\boldsymbol{T}}=$ constant, volume change, Boyle-
Mariotte, Gay-Lussac, pressure change, $\frac{V}{T}=$ constant, constant pressure, Charles, constant temperature, PV = constant, heat transfer.

| ISOTHERMAL PROCESS | ISOBARIC PROCESS | ISOCHORIC PROCESS |
| :--- | :--- | :--- |
|  |  |  |


[^0]:    ${ }^{1}$ Text from: https://aula44.files.wordpress.com/2009/09/activities-1-unit-2-3c2ba-eso.pdf
    ${ }^{2}$ Text modified from: https://www.toppr.com/guides/chemistry-formulas/charles-law-formula/

[^1]:    ${ }^{3}$ Text modified from: https://chem.libretexts.org/Bookshelves/Introductory_Chemistry/Introductory_Chemistry_(CK-12)/14\%3A_The_Behavior_of_Gases/14.05\%3A_Gay-Lussac's_Law

