Physics test

date	 class.		student.		
uate.	 Ciass.	,	student.	 	

- Exercise 1: Write the equation for the β decay of $_6^{14}$ C (atomic mass 14.003242u) to $_7^{14}$ N (atomic mass 14.003074u). What type of β decay does this equation represent? Calculate the energy released in the reaction.
- Exercise 2: Calculate the binding energy released in the α -decay of $^{185}_{79}$ Au (atomic mass 184.965790u) to $^{181}_{77}$ Ir (atomic mass 180.957625u).
- Exercise 3: Complete the picture below adding the names of the elementary particles that are missing.
- Exercise 4: Is the decay $\tau^- \longrightarrow e^- + \gamma$ possible? Motivate your answer.
- Exercise 5: Is a particle formed by the three quarks uds a hadron? Motivate your answer.

Standard Model of Elementary Particles

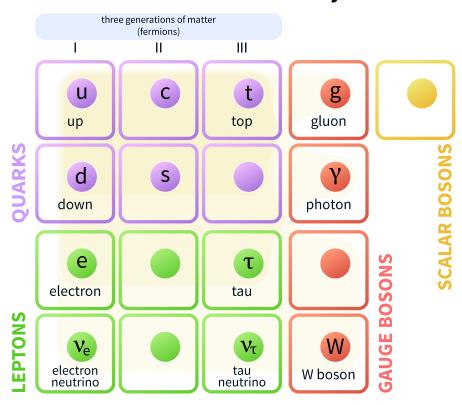


Figura 1: picture taken from https://en.wikipedia.org/wiki/Standard_Model and edited.