CLIL Module Plan

Author(s)	Giovanni Lombardi				
School	Liceo da Vinci - Trento				
School Grade	O Primary		O Middle		O High
School Year	$\bigcirc 1$	O 2	$\bigcirc 3$	$\bigcirc 4$	O 5
Subject	Matematica	Topic		Combinatorics, probability.	
CLIL Language	© English			O Deutsch	

Personal and social-cultural preconditions of all people involved

INSTITUTIONAL FRAMEWORK CONDITIONS The scientific high school "Leonardo da Vinci" is one of the historical "Liceo" of the Province of Trento. Nowadays the high school proposes two curricula, the ordinary scientific curriculum and the applied sciences scientific curriculum. ANTHROPOGENIC AND SOCIO-CULTURAL FACTORS OF THE GROUP OF LEARNERS The class consists of 23 students. There are no SEN students or students of foreign origin. LEARNING PRECONDITIONS The large part of the lessons of the present CLIL module takes place in the classroom. This is equipped with a PC, an interactive whiteboard (IWB), a large blackboard, and a projector. A few activities are carried out in the ICT lab, where each student can use a PC for calculations, data collection, and data analysis. The academic performance of the class for what concerns the scientific subjects is average. The behavior of the students is very polite although the level of participation is not high. The majority of the students are highly motivated and willing to learn new concepts, however there are elements of the class that do not have a specific interest in the subject or feel the foreign language as a barrier. TEACHER PROFILE The teacher Giovanni Lombardi (T), teaches Mathematics and Physics in various classes, ranging from the 1st to the 4th grade of the school and for this CLIL module has the role of main teacher. CEFR level: C1 (IELTS certification dated 18/01/2018). The Mathematics teacher in this class does not have a sufficient level of spoken English to actively participate to the lessons. However, she will participate to the lessons listening to the students, observing them, encouraging them to participate more actively when needed. STUDENT GROUP PROFILE All the students are Italian mother tongue, and their average CEFR level is B1+, but a few have a C1 certification. The students have limited CLIL experience, as they have followed a total of 30h of CLIL lessons during the previous school year.
Students' prior
knowledge,
skills,
competencies

Subject

Students have a solid knowledge of the basic maths operations in the field of real numbers. In the first year they have studied set theory and are able to work with sets and to carry out the basics operations between sets (union, intersection, ...) Students are able to solve first and second degree equations in one variable and systems of equations.

Language

The students have adequate communication skills. They can interact both with the teacher and with their fellow students in English, but they do not have a specific knowledge of the scientific terms necessary to describe the physical phenomena considered in this CLIL module. Students have good reading and writing skills

Timetable fit	O Module	Length 20 lessons of 50 ' each

Description of teaching and learning strategies

- The learning and teaching objectives are disciplinary-specific, interdisciplinary, and communicative. The lessons are designed to encourage the development of problem solving skills, critical thinking, creative thought, collaboration, communication, and time managing. - The methodological approaches are various, in order to meet different learning styles and to promote the development of different skills: interactive lessons, group work (especially when the task is complex), pair work, individual work, TPS (Think, Pair, Share), cooperative learning. During the "student-centered" activities the teacher acts as facilitator and guide. • Interaction and communication are promoted as much as possible by the teachers,(by asking questions and inviting the students to comment or express their ideas) and by activities focused on group or pair work. During these activities, the teacher circulates and models language, concepts and cognition. - A variety of online resources, including online lessons, spreadsheets, and practice material is used. The main sources of this online material are Khan-Academy and Youtube. • The teacher provides different materials to support content and language scaffolding, and to consolidate learning, e.g. worksheets, extra exercises, and homework. • During most activities a formative assessment by the teachers is provided and peer- or self-evaluation are encouraged. At the end of the Module a summative assessment is provided.

Overall Module Plan

Unit: 1

Combinatorics and probability
Unit length: 10 lessons of 100' each

Lesson 1

Permutations

Lesson 2

Permutations and factorials

Lesson 3

Combinations and binomial coefficients

Lesson 4

Probability - Classical definition

Lesson 5

Probability - Union

Lesson 6

Probability - Conditional probability

Lesson 7

Probability - Independent events

Lesson 8

Probability - Total probability

Lesson 9

Probability - Frequentist interpretation

Lesson 10

Final test + discussion

CLIL Lesson Plan

Unit number	1	Lesson number	1	Title	Permutations

Activity	Timing	Learning Outcomes	Activity Procedure	Language			Interaction	Materials	Assessment
1	5	Having an overview of the activities that will be carried out during this module.	- T explains the lesson plan for the present unit and gives a brief overview of the activities. - Ss ask questions and clarifications.	Skills			\square Wholeclass\square Groupwork\square Pair work\square Individualwork	None.	None.
				L	S	W			
				Key vocabulary Plan, experiment, theory, theoretical, teamwork, pair work, ICT, combinatorics					
				Communicative structures Sentences about planning, e.g. "We/You are going to..."					
2	15	Making hypotheses. Improving own problem solving skills. Modelisation.	BRAINSTORMING. - T proposes the following problem: "we have two chairs labeled \#1 and \#2: in how many ways can	Skills			Whole class Group work Pair work	None.	Formative: T assesses the insight of the hypothesis made by Ss. T informally assesses the
				L	S	W			
				Key vocabulary label, arrange, order.					

we arrange 4 Ss (named A, B, C, D) on the 2 chairs". T stresses that a situation with S A in chair \#1 and S B in chair \#2 is to be considered different from the situation with S B in chair \#1 and S A in chair \#2. - T writes on the blackboard the main points of the hypotheses made by Ss. - To clarify the problem T can call 4 Ss to the blackboard and, using two chairs, simulate some of the configurations described by the problem. - Ss are encouraged to make hypotheses, to motivate them, and to illustrate them to the rest of the class.

Communicative

structures

Sentence structures related to mathematical relations, to making and motivating hypotheses, to agreeing/disagreeing, e.g. - in how many ways can we arrange... - I think that... - If ... sits in chair \#1 and... then...Individual work
language used
to formulate
the
hypotheses.

level of participation and comprehension of Ss. Selfassessment: Ss can compare their version of the solution to the correct one.
During the discussion of
the solution T
assesses the
hypothesis
made by Ss for insight and language

8	8	Applying the knowledge acquired during the present lesson. Improving own problem solving skills.	- T hands out an exercise sheet to Ss. - Ss solve exercises 1, 2, 3 individually. Homework: solve exercise 5 and complete the Glossary given in file U1_L1_ALL1.pdf by adding the keywords noted down during the lesson.	Skills				Whole classGroup workPair workIndividual work	- U1_L1_ALL1.pdf - U1_L1_ALL2.zip Each Ss receives a printed copy of the exercise sheet "Permutations.pdf" (file U1_L1_ALL1.pdf - editable version U1_L1_ALL2.zip).	During the activity T goes around the class evaluating the of comprehension of Ss, giving advice if needed.
				L	S	R	W			
				Key see th sectio U1_L						
				Com stru Sent relat instru calcu of...		tiv uctu e.g. nu				

CLIL Lesson Plan

Unit number	1	Lesson number	2	Title	Permutations and factorials

Activity	Timing	Learning Outcomes	Activity Procedure	Language	Interaction	Materials	Assessment
1	10	Reviewing the results of the previous lesson. Consolidating the knowledge acquired in the previous lesson. Selfassessment.	- T briefly reviews the main concepts examined during the previous lesson. - Ss can ask questions about the contents of the previous lesson. A S is chosen to solve the exercise given as homework for the class.	Skills	Whole classGroup workPair workIndividual work	- U1_L1_ALL1.pdf	Formative: T assesses the solution of the problem for both content and language. Selfassessment: Ss compare their solutions to the correct ones.
				L S R W			
				Key vocabulary			
				label, arrange, order, tree-diagram, number, product, factor, element, permutation, likely.			
				Communicative structures Sentence structures related to mathematical relations, to making hypotheses, to the description of a diagram, e.g. - To solve the problem I used a tree-diagram...			

6	10	Discovering a recursive relation useful to calculate factorials. Creative thinking: identifying patterns. Presenting results. Comparing own results with those of peers. Giving opinions/comments.	- Ss form pairs. - T asks Ss to write the factorials of the numbers from 1 to 6 in the form of products (e.g. $\begin{aligned} & 1!=1,2!=2 * 1, \\ & \left.3!=3^{*} 2 * 1, \ldots\right) . \end{aligned}$ Working in pairs Ss have to examine these equations and try to find a common pattern. - After 5 minutes of pair work, the whole class discusses the matter. - T directs the discussion until the recursive relation $\mathrm{n}!=\mathrm{n} *(\mathrm{n}$ 1)! Is found. - The recursive relation is then used to simplify the formula for the number of permutations of n elements in k places, and to rewrite it in terms of factorials as D_n,k=n!/(n-k)!	Skills		Whole class Group work Pair work Individual work	None.	Formative: T assesses the insight of the hypothesis made by Ss. T informally assesses the language used to formulate the hypotheses. During the pair work T goes around the class supervising the work, giving advice if needed.
				L	S R W			
				Key vocabulary factorial, factor, product, previous/following				
				Communicative structures Sentence structures related to mathematical relations, to making hypotheses. - The first factor is always the same number that appears in the factorial.				

7	15	Combining the knowledge acquired during the previous activities and the knowledge about the solution of equations to solve a problem. Improving own problem solving skills. Presenting results.	- T asks Ss to use the recursive formula found in the previous activity to solve Exercise 9 of the file U1_L1_ALL1.pdf. After 5 minutes a S is chosen to solve the problem for the whole class at the blackboard. - Ss are asked to solve Exercises 4, 6, 7, 8,10 of the same file. The ones not done in class are left as homework.	Skills				Whole class Group work Pair work Individual work	- U1_L1_ALL1.pdf	During the activity T goes around the class evaluating the level of comprehension of Ss (asking targeted questions if necessary). T assesses the correctness of the solution given at the blackboard and the language used to present it.
				L	S	R	W			
				Key vocabulary factorial, factor, product, division, fraction, numerator/denominator, previous/following						
				Communicative structures Sentence structures related to mathematical relations, to making hypotheses, to describing steps of a solution, e.g. - I use the recursive formula at the numerator of the first fraction,..						

CLIL Lesson Plan

Making hypotheses. Improving own problem solving skills. Modelisation.

- T proposes the following problem: "we have two chairs labeled \#1 and \#2: in how many ways can we choose 4 Ss
(named A, B, C, D) on the 2 chairs". - The class discusses how this problem is different from the one given in Activity 1 of Lesson 1. - T stresses that in this case a situation with S A in chair \#1 and S B in chair \#2 is equivalent to the situation with S B in chair \#1 and S A in chair \#2. - Ss are encouraged to make hypotheses, to motivate them, and to illustrate them to the rest of the class. - To clarify the problem T can call 4 Ss to the blackboard and,

Skills

Key vocabulary label, arrange, order, choose.

Communicative

 structuresSentence structures related to mathematical relations, to making and motivating hypotheses, to agreeing/disagreeing, e.g. - we cannot use the formula for permutations because...

Whole

class
Group work

None.Pair workIndividual work

Formative: T assesses the insight of the hypotheses made by Ss. T informally assesses the language used to formulate the
hypotheses.
using two chairs simulate some of the configurations described by the problem. - The problem is then solved using a tree-diagram and counting the number of permutations that involve the same elements.

3	15	Employing the knowledge acquired during the previous activities to solve a problem that involves the combinations of n elements taken k at a time. Improving own problem solving skills. Presenting results. Comparing own results with those of peers. Giving opinions/comments.	- T asks Ss to use the tree-diagram method to solve the same problem of the previous activity but in the case that the chairs are 3 instead of 2. - Ss have 5 minutes to solve the problem individually. Then Ss form pairs and discuss the solutions with their pair-mate (for about 5 minutes). - The solution is finally discussed with the whole class. A S can be asked to solve the problem for the whole class at the blackboard.	Skills				Whole class Group work Pair work Individual work	None.	During the activity T goes around the class evaluating the level of participation and comprehension of Ss (asking targeted questions if necessary).
				L	S	R	W			
				Key vocabulary tree diagram, branch, node, path, factorial, permutation						
				Communicative structures Sentence structures related to mathematical relations, to making and motivating hypotheses, to agreeing/disagreeing, e.g. - we have to count all the paths of the tree diagram that involve the same elements.						
4	20	Generalising the results of specific problems. Making hypotheses, Critical thinking. Checking the validity of an hypothesis.	- T asks Ss to find the general formula that describes the number of ways to take n elements k at a	Skills				Whole classGroup workPair workIndividual work	None.	During the activity T goes around the class evaluating the level of participation
				L	S	R	W			

Cooperation in a group work. Learning the definition of binomial coefficient and the main properties of binomial coefficients.
time. - Ss work in groups for 7
minutes. - Ss
make hypothesis and discuss them with their group mates. - When 7 minutes expire T writes on the blackboard the solutions proposed by the different group. The solution are discussed with the whole class. The term
"combination" is introduced. - The correct solution is written in the form C_nk = $n!/((n-k)!k!)=$ D_nk/k!, highlighting that the number of combinations is equal to the number of permutations of n elements in k places divided by k ! (i.e. by the number of permutations that involve the same

Key vocabulary

Generalise, product, factor, element, permutation, combination, factorial, integer (number)

Communicative

 structuresSentence structures related to mathematical relations, to making hypotheses, to the description of a diagram, e.g. - the solution is a product of ... factors. - the number of permutations of n elements (in n places) is... - the factorial of a (positive) integer number is defined as...
comprehension
of Ss. Self-
assessment:
Ss can
compare their solution to the correct one.
During the discussion of the solution T assesses the hypotheses made by Ss for insight and
language

6	15	Employing the knowledge acquired during the previous activities to solve exercises that involve combinations of n elements taken k at a time and/or binomial coefficients. Improving own problem solving skills. Presenting results. Comparing own results with those of peers. Giving opinions/comments.	- T asks Ss to use the properties of binomial coefficients to solve Exercise 5 of the exercise sheet "Combinations" (file U1_L3_ALL1.pdf). -Ss have 5 minutes to solve the problem individually. - The solution is then discussed with the whole class. In the remaining time Ss solve exercises 1, 2, 6 of the exercise sheet. - The other exercises of the exercise sheet are left as homework.	Skills				Whole class Group work Pair work Individual work	- U1_L3_ALL1.pdf - U1_L3_ALL2.zip Each S receives a printed copy of the exercise sheet "Combinations" (file U1_L3_ALL1.pdf).	During the activity T goes around the class evaluating the level of participation and comprehension of Ss (asking targeted questions if necessary).
				L	S	R	W			
				Key bino coeff comb com the in the U1_L	ocab al, ient nato natio loss file	ulary nomi cs, See y" s pdf.				
				Com stru Sent relat relat choo alter way binom 12 o			atical an mon e of			

CLIL Lesson Plan

Unit number	1	Lesson number	4	Title	Probability - Classical definition

Activity	Timing	Learning Outcomes	Activity Procedure	Language			Interaction	Materials	Assessment
1	15	Reviewing the main topics examined during the lessons about permutations and combinations. Consolidating the knowledge acquired in the previous lesson. Correcting (some of) the exercises left as homework. Selfassessment.	- T briefly reviews the main concepts examined during the previous lesson. - Ss can ask questions about the contents of the previous lesson. The solutions of (some of) the exercises left as homework are discussed.	Skills			■ Whole class Group work Pair work Individual work	- U1_L3_ALL1.pdf	Formative: T assesses the solution of the problem for both content and language. Selfassessment: Ss compare their solutions to the correct ones.
				L	S	W			
				Key vocabulary binomial, binomial coefficient, combinatorics, combination. See also the "Glossary" section in the file U1_L3_ALL1.pdf.					
				Communicative structures Sentence structures related to mathematical relations, to the description of steps of a solution e.g. - we have defined 0! as... - I started by calculating..., then I...					

knowledge acquired during the previous lessons and activities to solve exercises that involve the calculation of probabilities Improving own problem solving skills. Presenting results. Comparing own results with those of peers. Giving opinions/comments.

- T works out two simple examples at the blackboard to prove that the tree diagram method can be used to count the favorable and the possible outcomes of an event, and therefore to calculate probabilities. - Ss have 5 minutes to solve individually Exercises 1, 2, and 3 of the exercise sheet "Probability - part 1" (file U1_L4_ALL1.pdf).
- Then Ss form pairs and discuss their solutions with their pairmate (for about 5 minutes). - The solutions are then discussed with the whole class. Three Ss are asked to present their solutions to the class.

Skills

L	S	R	W

Key vocabulary

Probability, percentage event, fair coin, fair die/dice, outcome.

Communicative

 structuresSentence structures related to mathematical relations, to making hypotheses, to presenting result, and to giving opinions and comments e.g. Following the definition of probability we have to calculate... -
According to me the number of favorable outcomes is..." - I disagree: I think the right result is... because...Whole class
Group workPair work

回 Individual work

- U1_L4_ALL1.pdf
- U1_L4_ALL2.zip

Each S receives a printed copy of the exercise sheet "Probability - part 1" (file U1_L4_ALL1.pdf - editable version U1_L4_ALL2.zip).

During the activity T goes around the class evaluating the level of participation and comprehension of Ss (asking targeted questions if necessary). The solutions presented during the final discussion are then assessed for both content and language.

CLIL Lesson Plan

Unit number	1	Lesson number	5	Title	Probability - Union

Communicative

structures

Sentence structures related to mathematical relations, to the description of steps of a solution e.g. - the classical definition of probability states that... - I counted the paths of the tree diagram that represent...

exercises are
mutually
exclusive. A
possible simple exercise is for instance:
"Consider a single coin flip, and the
two events
A=finding heads, and $B=$ finding tails. Find the probability of A u B." - Ss have 10 minutes to solve the exercises. -
The exercises are then corrected for the whole class at the blackboard:
Ss can be asked to go to the blackboard to correct the
exercises for their classmates. - T encourages Ss to compare the probabilities of the single events considered to the probability of their union. - Ss realise that in all the exercises the probability of the

Communicative

 structuresSentence structures related to mathematical relations, e.g. - the probability of the union of A and B is equal to the probability of A plus the probability of B.
assessment: Ss can compare
the correct
solution of the
exercises to
their own and
evaluate their
level of
comprehension.
union is the sum
of the
probabilities of
the single events.

- At the end of the
discussion T
writes on the
blackboard the
formula $P(A \cup B)$
$=p(A)+p(B)$
(formula valid only for mutually
exclusive events).

the next group. The groups solve the problems
they just
received. - When
other 10 minutes
expire, the two
hardest exercises
are discussed
with the whole
class. - T stresses
that the formula found in the
previous activity
is valid only for
mutually
exclusive events.

5	15	Understanding the main points of a short video in which the general formula for the probability of the union of two events (the addition rule) is derived using Venn diagrams. Learning the general forumla for the probability of the union of two events. Identifying important data, information, and keywords. Vocabulary building.	- Ss watch a video in which the general formula for the probability of the union of two events (the addition rule) is derived using Venn diagrams. T pauses the video and adds clarifications when needed. During the video Ss take notes and ask questions.	Skills				Whole classGroup workPair workIndividual work	T shows the youtube video "Addition rule for probability": link (from Khan Academy) on the IWB.	None.
				L	S	R	W			
				Key vocabulary event, probability, union, or, intersection, Venn diagram, set.						
				Communicative structures Sentence structures related to mathematical relations, and to operations between sets, e.g. - the probability of the union of two events is...						
6	20	Employing the knowledge acquired during the previous activities to solve exercises that involve calculating the probability of the union of two events. Improving own problem solving skills. Presenting results to peers. Comparing own results with those	- T shows how using a 2 way table is a convenient way to solve exercises that involve the results obtained by throwing 2 dice. - T asks Ss to use this method to solve Exercises 3, 4, and 6 of the exercise sheet	Skills				Whole classGroup workPair workIndividual work	- U1_L5_ALL1.pdf - U1_L5_ALL2.zip Each S receives a printed copy of the exercise sheet "Probability - part 2" (file U1_L5_ALL1.pdf - editable version U1_L5_ALL2.zip).	During the activity T goes around the class evaluating the level of participation and comprehension of Ss (asking targeted questions if necessary).
				L	S	R	W			
				Key vocabulary event, probability, union, intersection, Venn diagram, set. See also the "Glossary" section in U1_L5_ALL1.pdf						

of peers. Giving opinions/comments.	"Probability - part 2" (file U1_L5_ALL1.pdf). - After 5 minutes Ss form pairs and discuss the solution. - After 5 more minutes the solution is discussed with the whole class. - In the remaining time Ss solve exercises 1 and 2 from the exercise sheet. - The solution of these two exercises is then discussed with the whole class. - The other exercises of the exercise sheet are left as	Communicative structures Sentence structures related to mathematical relations, to sharing and discussing results, to giving/receiving advice, e.g. - My result is ...What is yours? - I think you made a mistake: look at...

CLIL Lesson Plan

3	15	Employing the knowledge acquired during the previous activities to solve exercises that involve calculating conditional probabilities Improving own problem solving skills. Presenting results to peers. Comparing own results with those of peers. Giving opinions/comments. Peer- and selfassessment.						Whole class Group work Pair work Individual work	- U1_L6_ALL1.pdf - U1_L6_ALL2.zip Each S receives a printed copy of the exercise sheet "Probability - part 3" (file U1_L6_ALL1.pdf - editable version U1_L6_ALL2.zip).	During the activity T goes around the class evaluating the level of participation and comprehension of Ss (asking targeted questions if necessary). Peer- and selfassessment: Ss compare their solutions to those of their classmates and to the correct ones.
			solution. - After 5 more minutes the solution is discussed with the whole class: two Ss are asked to present the solution of the exercises at the blackboard to the	Com stru Sent relat mat relat desc a so prob that land	muni cture ence ed to emat ons, ription ution ability at lea d on	cativ truct cal the of st .g. of ... t one	res ps of he given coin			

CLIL Lesson Plan

Unit number		1 Lesson	Lesson number	7	Title Pr	Probability - Independent events		
Activity	Timing	Learning Outcomes	Activity Procedure	Language		Interaction	Materials	Assessment
1	15	Reviewing the main topics examined during the previous lesson. Consolidating the knowledge acquired in the previous lesson. Correcting (some of) the exercises left as homework. Selfassessment.	- T briefly reviews the main concepts examined during the previous lesson. - Ss can ask questions about the contents of the previous lesson. The solutions of (some of) the exercises left as homework are discussed (Ss can be asked to solve the exercises at the blackboard).	Skills		Whole class Group work Pair work Individual work	- U1_L6_ALL1.pdf	Formative: T assesses Ss that correct the exercises at the blackboard on the correctness of the solution and on the language used to present it. Self assessment: Ss can compare the correct solution of the exercises to their own and evaluate their level of comprehension.
				L	R W			
				Key vocabulary event, probability, conditional, given, union, intersection.				
				Communicative structures Sentence structures related to mathematical relations, giving suggestions/advice, and to describing an experiment, e.g. - To demonstrate the equation I have used the Venn diagram representation.				

knowledge about conditional probability to derive the "product rule": a focmula that describes the probability of the intersection of two events as a function of the conditional probability and of the probability of one of the two events. -
Manipulating a mathematical expression. Cooperating. Organising the group work.
blackboard the formula for the conditional probability $p(A \mid B)$ and asks Ss to manipulate it in order to find $p(A \cap B)$. $-p(A \cap B)$ is derived by Ss starting from $p(B \mid A)$, - The product rule is derived in the form $p(A \cap B)=$ $p(A \mid B) p(B)=$ $p(B \mid A) p(A)$. Working in groups of 3/4, Ss check the validity of the formula by examining some of the exercises about conditional probability solved in the previous lesson or as homework. Ss use tree diagrams or two way tables to calculate the probability of the intersection and compare it to the product $p(A \cap B)=$ $p(A \mid B) p(B)$ using the values

Skills

\section*{| L | S | R | W |
| :--- | :--- | :--- | :--- |}

Key vocabulary

event, probability, conditional, given, union, intersection, product rule.

Communicative

 structuresSentence structures related to mathematical relations, and to describing tree diagrams and two-way tables, e.g. - To obtain $p(A \cap B)$ we have to manipulate the formula for $p(A \mid B)$.

- Whole
 class
 - Group work

Pair workIndividual workNone.
activity T goes around the class evaluating the level of participation and comprehension of Ss (giving advice to the groups if needed). Selfassessment: Ss compare their solutions to the correct ones.
previously
calculated.

3	15	Understanding the main points of a short video about independent events. Identifying important data, information, and keywords. Vocabulary building.	- Ss watch a video in which the probability of the intersection of two or more independent events is calculated. - The video gives also a quick informal definition of independent events. - T pauses the video and adds clarifications when needed. During the video Ss take notes and ask questions.	Skills				Whole class Group work Pair work Individual work	T shows the youtube video "Compound probability of independent events": link (from Khan Academy) on the IWB.	None.
				L	S	R	W			
				Key vocabulary event, probability, coin flip, product rule, equally likely, possibility, outcome.						
				Communicative structures Sentence structures related to mathematical relations, and to the description of steps of a process, e.g. - In order to calculate the probability of..., first we.... then...						

6	10	Employing the knowledge acquired during the previous activities to solve problems about the probability of independent events. Improving own problem solving skills.	- T asks Ss to solve exercises 4 and 10 of the exercise sheet "Probability - part 4" (file U1_L7_ALL1.pdf). - The remaining exercises of the exercise sheet are left as homework	Skills				Whole class Group work Pair work Individual work	- U1_L7_ALL1.pdf -U1_L7_ALL2.zip	During the activity T goes around the class supervising the work of Ss and giving advice if needed.
				L	S	R	W			
				Key vocabulary event, probability, independent, see also the "Glossary" section in file U1_L7_ALL1.pdf						
				Communicative structures Sentence structures related to mathematical relations, and to asking questions/giving tasks e.g. - Does he have more chances to... or to...?						

7	10	Understanding the main points of a short video about the solution of a problem involving the probability of independent events. Identifying important data, information, and keywords. Selfassessment. Vocabulary building. Reasoning on different strategies of solution.	- Ss watch a video about the solution of exercise 10 of file U1_L7_ALL1.pdf During the video Ss take notes, ask questions, and correct their own solution of the exercise.	Skills				Whole class Group work Pair work Individual work	- U1_L7_ALL1.pdf T shows the youtube video "Three-pointer vs free-throw probability": link (from Khan Academy) on the IWB.	Self assessment: Ss compare their solution to the correct one and compare their solution strategy to an alternative one.
				L	S	R	W			
				Key vocabulary event, probability, independent, see also the "Glossary" section in file U1_L7_ALL1.pdf.						
				Communicative structures - The probability of ... is...						

CLIL Lesson Plan

Unit number		1 Lesso	Lesson number	8 Title	Probability - Total probability		
Activity	Timing	Learning Outcomes	Activity Procedure	Language	Interaction	Materials	Assessment
1	15	Reviewing the main topics examined during the previous lesson. Consolidating the knowledge acquired in the previous lesson. Correcting (some of) the exercises left as homework.	- T briefly reviews the main concepts examined during the previous lesson. - Ss can ask questions about the contents of the previous lesson. The solutions of (some of) the exercises left as homework are discussed (Ss can be asked to solve the exercises at the blackboard).	Skills Key vocabulary event, probability, conditional, given, union, intersection, dependent. Communicative structures Sentence structures related to mathematical relations, giving suggestions/advice, and to describing steps of a solution, e.g. - My result for... is...	Whole class Group work Pair work Individual work	- U1_L7_ALL1.pdf	Formative: T assesses Ss that correct the exercises at the blackboard on the correctness of the solution and on the language used to present it. Self assessment: Ss can compare the correct solution of the exercises to their own and evaluate their level of comprehension.

5	10	Learning the law of total probability. Interpreting and generalising results. Taking notes.	- T invites Ss to examine the solutions of the exercises solved in the previous activity and in activity 2 . - T shows that the results are consistent with the formula of total probability. The formula of total probability is presented and explained.	Skills	Whole class Group work Pair work Individual work	None.	None.
				L			
				Key vocabulary event, probability, conditional, given, union, intersection, product rule, node, branch.			
				Communicative structures Sentence structures related to mathematical relations, to giving opinions/comments, and to describing tree diagrams, e.g. - the law of total probability expresses the total probability of ...			

$\left.\begin{array}{l|l|l|}\begin{array}{l}\text { problem solving } \\ \text { skills. Presenting } \\ \text { results to peers. } \\ \text { Giving } \\ \text { opinions/comments. }\end{array} & \begin{array}{l}\text { the whole class: } \\ \text { two Ss are asked } \\ \text { to present the } \\ \text { solution of the } \\ \text { exercises at the } \\ \text { blackboard to the } \\ \text { rest of the class. - } \\ \text { The exercises of } \\ \text { the exercise } \\ \text { sheet }\end{array} & \begin{array}{l}\text { Key vocabulary } \\ \text { event, probability, } \\ \text { conditional, given, } \\ \text { union, intersection, } \\ \text { product rule, node, } \\ \text { branch. See also the } \\ \text { "Glossary" section in } \\ \text { file U1_L8_ALL1.pdf. }\end{array} \\ & \begin{array}{ll}\text { U1_L8_ALL1.pdf } \\ \text { that were not } \\ \text { solved in class } \\ \text { are left as } \\ \text { homework. }\end{array} & \begin{array}{l}\text { Communicative } \\ \text { structures }\end{array} \\ \begin{array}{ll}\text { Sentence structures } \\ \text { related to mathematical } \\ \text { relations, to giving } \\ \text { opinions/comments, } \\ \text { and to describing tree } \\ \text { diagrams, e.g. - the first }\end{array} \\ \text { node of the tree } \\ \text { diagram must ... } \\ \text { branches. - The weight }\end{array}\right\}$
comprehension of Ss (giving advice to the groups if needed). Selfassessment: Ss compare their solutions to the correct ones.

CLIL Lesson Plan

Unit number	1	Lesson number	9	Title	Probability - Frequentist interpretation


```
Communicative
structures
Sentence structures
related to
mathematical
relations, to giving
opinions/comments,
and to describing
tree diagrams, e.g.
- to solve the
exercise i have
used a weighted
tree diagram. - the
weight of this
branch is...
```


CLIL Lesson Plan

Unit number	1	Lesson number	10	Title	Final test + discussion

Activity	Timing	Learning Outcomes	Activity Procedure	Language	Interaction	Materials	Assessment
1	60	Understanding the text and the requests of the test. Employing the knowledge acquired during this unit to solve exercises of various difficulty levels. Tackling a question taken from the Italian scientific high school exit exam of 2012. Graph interpretation. Creative thinking. Problem solving ability.	- Ss employ the knowledge acquired during this unit to solve five exercises of various difficulty levels. - T hands out the test and reads the questions out loud, making sure that all Ss have understood the tasks.	Skills	Whole class Group work Pair work Individual work	- U1_L10_ALL1.pdf - U1_L10_ALL2.zip Each S receives a printed copy of file U1_L10_ALL1.pdf (editable version U1_L10_ALL2.zip).	Performance evaluation.
				L S (R (W			
				Key vocabulary Scientific terms used in the rest of the module.			
				Communicative structures Sentence structures related to giving instruction, and necessary to answer a question and describing steps of a procedure, e.g. - you have 60'to complete the test.			

2	30	Understanding the mistakes done in the test. Evaluating own work. Reflecting on different solution strategies.	- T works out the correction of the various exercises at the blackboard. - Ss ask questions and propose alternative solutions. - The solutions of the exercises are discussed.	Skills				Whole classGroup workPair workIndividual work	- U1_L10_ALL1.pdf	Self- assessment: Ss can compare their solutions to the correct ones and assess their level of comprehension.
				L	S	R	W			
				Key vocabulary Scientific terms used in the rest of the module.						
				Communicative structures Sentence structures related to mathematical relations, to the descriptions of (steps of) a process, and to proposing alternatives, e.g. - I have solved that exercise in a different way:...						

