ELECTRIC FIELD SKETCH

This diagram shows the location and charge of two identical small spheres. Find the magnitude and direction of the electric field at the five points indicated with open circles. Use these

$$
E=\sum \frac{k q}{r^{2}}=0 \mathrm{~N} / \mathrm{C}
$$

2

$$
E=\sum \frac{k q}{r^{2}}=\left(9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}\right)\left(1 \times 10^{-6} \mathrm{C}\right)\left[\frac{1}{(6 \mathrm{~m})^{2}}+\frac{1}{(2 \mathrm{~m})^{2}}\right]=2,500 \mathrm{~N} / \mathrm{C}
$$

3

$$
E=\sum \frac{k q}{r^{2}}=\left(9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}\right)\left(1 \times 10^{-6} \mathrm{C}\right)\left[\frac{1}{(4 \mathrm{~m})^{2}}+\frac{1}{(8 \mathrm{~m})^{2}}\right]=703 \mathrm{~N} / \mathrm{C}
$$

4

$$
E=\sum \frac{k q}{r^{2}}=\left(9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}\right)\left(1 \times 10^{-6} \mathrm{C}\right)\left[\frac{1}{(2 \sqrt{2} \mathrm{~m})^{2}}\right] \sqrt{2}=1,590 \mathrm{~N} / \mathrm{C}
$$

$$
\begin{aligned}
& E_{\text {left }}=\frac{k q}{r^{2}}=\frac{\left(9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}\right)\left(1 \times 10^{-6} \mathrm{C}\right)}{(3 \mathrm{~m})^{2}}=1000 \mathrm{~N} / \mathrm{C} \\
& E_{\text {left } x}=E_{\text {leff }} \cos \theta=(1000 \mathrm{~N} / \mathrm{C})(0)=0 \mathrm{~N} / \mathrm{C} \quad E_{\text {lef } y}=E_{\text {leff }} \sin \theta=(1000 \mathrm{~N} / \mathrm{C})(1)=+1000 \mathrm{~N} / \mathrm{C} \\
& E_{\text {right }}=\frac{k q}{r^{2}}=\frac{\left(9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}\right)\left(1 \times 10^{-6} \mathrm{C}\right)}{(5 \mathrm{~m})^{2}}=360 \mathrm{~N} / \mathrm{C} \\
& E_{\text {right }}=E_{\text {right }} \cos \theta=(360 \mathrm{~N} / \mathrm{C})(4 / 5)=-288 \mathrm{~N} / \mathrm{C} \quad E_{\text {right }}=E_{\text {right }} \sin \theta=(360 \mathrm{~N} / \mathrm{C})(3 / 5)=+216 \mathrm{~N} / \mathrm{C} \\
& E=\sqrt{\left(E_{\text {lef } x}+E_{\text {right }}\right)^{2}+\left(E_{\text {left } y}+E_{\text {right }}\right)^{2}}=\sqrt{(0 \mathrm{~N} / \mathrm{C}-288 \mathrm{~N} / \mathrm{C})^{2}+(+1000 \mathrm{~N} / \mathrm{C}+216 \mathrm{~N} / \mathrm{C})^{2}}=1250 \mathrm{~N} / \mathrm{C} \\
& \tan \theta=\frac{E_{\text {lffy }}+E_{\text {righy }}}{E_{\text {left } x}+E_{\text {rightx }}}=\frac{+1000 \mathrm{~N} / \mathrm{C}+216 \mathrm{~N} / \mathrm{C}}{0 \mathrm{~N} / \mathrm{C}-288 \mathrm{~N} / \mathrm{C}} \quad \theta=103^{\circ}
\end{aligned}
$$

