
QUEUE: ADT and CDT
Recap and Scaffolding

Consider the following definition of a queue:

Abstract Data Type Queue

· Data : set of ordered elements. The order is established by the sequence of entry in a FIFO mode.
· Operations : Elements enter and exit the queue following the FIFO mode.

The ADT Queue can be associated with many different CDTs:

Remember: the CDT is the Concrete Data Type, i.e. the implementation of the ADT, consisting of:
· the data structure used to contain the ADT data
· the procedures implementing the ADT operations using the identified data structure

Here we examine two possible CDTs, both using an array.

In both cases, enqueue in a full array requires RESIZING of the array.
Resizing is most efficiently performed doubling the actual size.

CDT1. Concrete Data Type Queue - Basic

· Data : array of elements
· Operations:
· enqueue: use an index TAIL, pointing to the last entered element.
· dequeue: always at index 0.

Drawback of this CDT: left shift at each dequeue.
When the queue has many elements this is quite an expensive operation.

Example:

Queue - initially empty
	
	
	
	
	

After enqueue of elements 1..5

Queue
	1
	2
	3
	4
	5

HEAD											TAIL

After a dequeue (always followed by a left shift)

Queue
	2
	3
	4
	5
	

HEAD									TAIL

A subsequent enqueue of element 6 will result

Queue
	2
	3
	4
	5
	6

HEAD											TAIL

CDT1 is easy to interpret and manage, but not efficient.

CDT2. Concrete Data Type Queue - Powered

· Data : array of elements
· Operations:
· enqueue: use an index TAIL, pointing to the last entered element.
· dequeue: use an index HEAD, pointing to the first entered element.

The power of the two indexes: no need to shift.
TAIL and HEAD go around the array from the beginning to the end and back to the beginning in order to use all possible spaces

Example:

Queue - initially empty
	
	
	
	
	

After enqueue of elements 1..5

Queue
	1
	2
	3
	4
	5

HEAD											TAIL

After a dequeue

Queue
	
	2
	3
	4
	5

			HEAD								TAIL

A subsequent enqueue of element 6 will result

Queue
	6
	2
	3
	4
	5

TAIL			HEAD

After 4 dequeues

Queue
	6
	
	
	
	

TAIL HEAD

CDT2 is less intuitive and more difficult to manage, but it is more efficient (no shift at dequeue, only update of index HEAD).

Let’s reflect on the impact of the resizing needed when enqueueing in a full array.

Simulate the enqueue of element 7 and represent the resulting situation for both cases below:

CDT1. Concrete Data Type Queue - Basic

Initial Queue
	2
	3
	4
	5
	6

HEAD											TAIL

→ enqueue 7

Resulting queue?

CDT2. Concrete Data Type Queue - Powered

Initial Queue
	6
	2
	3
	4
	5

TAIL			HEAD

→ enqueue 7

Resulting queue?

ANSWER KEY

CDT1. Concrete Data Type Queue - Basic

Resulting Queue
	2
	3
	4
	5
	6
	7
	
	
	
	

HEAD							TAIL

CDT2. Concrete Data Type Queue - Powered

Resulting Queue
	6
	7
	
	
	
	
	2
	3
	4
	5

 TAIL						HEAD

With regard to resizing, CDT2 is not more efficient.

