Archimedes' principle and buoyancy: exercises

TASK 1. Solve the following guided exercises.

Exercise 1

An object weighs 20 N in the air. When placed in a can full of water it weighs only 15 N . What is the size of the upthrust of the object?

GUIDED SOLUTION

Numbers:

Upthrust = weight of an object in air - weight of an object in water

According to Archimedes Principle, Upthrust on the object $=$ to the weight of the fluid displaced.

Exercise 2

In figure, a cylinder is immersed in water. If the height of the cylinder is 20 cm , the density of the cylinder is $1200 \mathrm{~kg} / \mathrm{m}^{3}$ and the density of the liquid is $1000 \mathrm{~kg} / \mathrm{m}^{3}$, find:
a. The weight of the object
b. The buoyant force

GUIDED SOLUTION

Draw the forces on the cylinder
a. Volume of the cylinder, V = \qquad

(sketch by the author)

Density of the cylinder, $d_{c}=$ \qquad
Gravitational Field Strength, $\mathrm{g}=$ \qquad
Weight of the cylinder, $\mathrm{W}=$ \qquad
b. Volume of the displaced water $=$ \qquad
Density of the water, $\mathrm{d}_{\mathrm{w}}=$ \qquad
Upthrust, F = \qquad

TASK2. Now try these on your own!

1) A ship weighing $46328 t$ is lowered into water. What weight of water would it displace?
2) A ball of mass 2 kg having a diameter of 50 cm falls in the swimming pool.

Calculate its buoyant force and volume of water displaced.
3) A standard basketball (mass = 624 grams; 24.3 cm in diameter) is held fully under water. Calculate the buoyant force and weight.
When released, does the ball sink to the bottom or float to the surface?

- If it floats, what percentage of it is sticking out of the water?
- If it sinks, what is the normal force, F_{N} with which it sits on the bottom of the pool?

4) Six objects (A-F) are in a liquid, as shown. None of them are moving. Arrange them in order of density, from lowest to highest.

