Exploring Pressure Underground Sim Lab

Directions

1. Go to the PhET simulation "Under Pressure"
https://phet.colorado.edu/en/simulation/underpressure
2. Push the big Play arrow.
a. Start with the default settings.
b. Fill the tank with water.
c. Turn on the Grid and play with the Ruler.
d. Use the Grid to get you data table measurements.

3. Click on the pressure gauge to move it toward the water. Measure the pressure in the water at every 0.50 \underline{m} from the surface to the bottom.

Data Table

Depth (m)	Pressure (kPa ${ }^{\mathbf{1}}$)

4. Use Excel, or similar and create a graph with depth on the x-axis and pressure on the y-axis.
5. Copy and paste your graph below.

[^0]6. Which variable is the independent variable (x-axis)? \qquad
7. Which variable is the dependent variable (y-axis)? \qquad
8. What is the physical meaning of the slope? \qquad
\qquad
9. What is the physical meaning of the y-intercept? \qquad _
\qquad
10. What is the relationship between depth and pressure?

- As \qquad increases, then \qquad increases. Why do you think this happens?

11. Now, pick a depth and vary the fluid density from 700 to $1,400 \mathrm{~kg} / \mathrm{m}^{3}$. Record your results on the table below. Note that the simulation will give you kPa . Convert to Pa before entering the values on the table. My chosen depth was:

Density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	Pressure $\left(\mathrm{Pa}=\mathrm{N} / \mathrm{m}^{2}\right)$

12. Use Excel, or similar, to make a graph of pressure vs density. Copy and paste your graph and equation below.
13. What is the physical meaning of the slope?
14. What is the physical meaning of the y-intercept?
15. Based on what you learned in this activity, what is the formula for determining the pressure in a fluid? State what each of the symbols mean.

[^0]: ${ }^{1}$ unit of pressure and stress; a pascal is a pressure of one newton per square meter, or, in SI base units, one kilogram per meter per second squared.

