LAB EXPERIMENT: DENSITY

PURPOSE

TASK. Reorder the sentence to express the purpose of the performed experiment. density| To | the | with | determine | objects | shape | . | of |regular

MATERIALS AND INSTRUMENTS

TASK. Complete the list with sensitivity and range of the measuring instruments.

- A set of objects (a cube, a sphere, a parallelepiped) made of the same material (wood).
- Balance
- Ruler

$$
\begin{array}{lll}
(s= & ; r= &) \\
(s= & ; r= &)
\end{array}
$$

EXPERIMENTAL PROCEDURE

Calculate the density by measuring the mass and volume of your samples.
TASK. Insert the missing words.

1. Measuring the Mass

Measure the \qquad of your samples using the \qquad provided.
You will make this measurement three times and calculate the average. Record your results in the table below.

Trial	CUBE	SPHERE	PARALLELEPIPED
1			
2			
3			
Avarage			

2. Measuring the Volume

To determine the \qquad of an object with a regular shape there are standard equations.
Match the solid with the correct equation to calculate the volume.
Cube
Sphere

$$
\begin{gathered}
V=\frac{4}{3} \pi r^{3} \\
V=a^{2}
\end{gathered}
$$

Parallelepiped

$$
V=a \cdot b \cdot c
$$

Measure the relevant dimensions of your sample and record the reading in the tables below. Then calculate the volume of each solid using the correct

Cube

Trial	a (cm)
1	
2	
3	
Average	

V=

Sphere

Trial	$\mathrm{r}(\mathrm{cm})$
1	
2	
3	
Average	

V=

Parallelepiped

Trial	a (cm)	b (cm)	C (cm)
1			
2			
3			
Average			

3. Calculate the density

	Volume $\left(\mathrm{cm}^{3}\right)$	Mass (grams)	Density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$
Cube			
Sphere			
Parallelepiped			

CONCLUSIONS

TASK. Write here what you understood from the experiment.

- Even though both object have different shape and volume what do you observe about the density of the samples?
- Is it consistent with what you expected?

