## CLIL Module Plan

| Author(s) | Clementina d'Esposito |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| School | Liceo Fabio Filzi |  |  |  |  |  |  |  |
| School Grade | O Primary |  |  | O Middle |  |  | O High |  |
| School Year | $\bigcirc 1$ |  | O 2 | $\bigcirc 3$ |  | $\bigcirc 4$ |  | O 5 |
| Subject | Fisica | Topic |  | Vectors and forces as vectors |  |  |  |  |
| CLIL Language | ○ English |  |  |  | O Deutsch |  |  |  |

## Personal and social-cultural preconditions of all people involved

The classes involved in this project include students coming from Rovereto or small villages located in the surrounding area. For all students, Italian is the mother tongue and no student had CLIL experience before starting this module, apart from two girls who had the chance to study geography using the CLIL methodology at middle school. The teacher of both classes is the only adult present during all the lessons. This is the teacher's third experience in teaching applying CLIL methodology.

## Students' prior knowledge, skills, competencies

## Subject

Students start studying physics in the third year of this high school and so they are unfamiliar with the content of the module considered. They are able to write and read any mathematical expressions, they know physical quantities, units of measurement and their multiples and sub-multiples.

## Language

The average level of students is B1 (according to CEFR) and at the beginning of the course there was no student who had any linguistic certificate. Class 3 LUB Number of students 23 Special educational needs: 0 Migrant background: 2 from Pakistan 1 from Serbia. Class 3LUC Number of students 19 Special educational needs: 0 Migrant background: 2 from Pakistan 1 from Moldavia.

| Timetable fit | 〇 | Length 20 lessons each of them consists of 50 minutes apart from |
| :--- | :--- | :--- |
|  | Module | lesson 15 |

Description of teaching and learning strategies

Some topics are introduced by teacher with the support of power point and the use of the whiteboard, usually students are asked to recap or to solve some exercises to check their comprehension of the subject considered. Sometimes students introduce new content/information after analyzing the materials supplied by teacher in advance. Each lesson contains a glossary to help students to remember key words and to learn specific language.

## Overall Module Plan

## Unit: 1

Unit 1 - Vectors
Unit length: 10 LESSONS (one hour per lesson) $=10 \mathrm{~h}$

## Lesson 1

Vectors: introduction

## Lesson 2

Vectors: operations

## Lesson 3

Exercises to practice vector operations(sum and difference) related to lesson 1 and lesson 2

## Lesson 4

Exercises to practice vector operations (multiplication and division) related to lesson 1 and lesson

## Lesson 5

Components of a vector (task1+task2)

## Lesson 6

Vectors and trigonometry

## Lesson 7

Exercises to practice the resultant vector through the use of components (task 3)

## Lesson 8

Revision for written test (exercises related to vectors, operations and components)

## Lesson 9

Written test

## Lesson 10

Check and correction of written test

Unit: 2
FORCES
Unit length: 11 hours

## Lesson 1

Concept of force and spring force

## Lesson 2

Weight and mass

## Lesson 3

Exercises to consolidate understanding of force and spring force

## Lesson 4

Friction

## Lesson 5

Comprehension check of weight and mass, frictional force

## Lesson 6

Equilibrium of a particle: introduction

## Lesson 7

Body on an inclined plane

## Lesson 8

Inclined plane: exercises in groups

## Lesson 9

Recap: forces as vectors

## Lesson 10

Written test

## CLIL Lesson Plan

| Unit number | 1 | Lesson number | 1 | Title | Vectors: introduction |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |



| 2 | $25$ <br> minutes | Comprehension of geometrical representation of vectors | Students apply knowledge gained from presentation 1 by drawing pairs of vectors on the whiteboard with the same or different magnitude and direction | Skills | Whole <br> class Group work Pair work Individual work | Presentation $n^{\circ} 1$ | Formative assessment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | L S S R $\quad$ W |  |  |  |
|  |  |  |  | Key vocabulary <br> Vector/vectorial Scalar Resultant Arrow Tail |  |  |  |
|  |  |  |  | Communicative structures <br> Today we are going to talk about... We can define/distinguish ... Examples of scalar and vector quantities are... |  |  |  |
| 3 | 5 minutes | Recap of information | Students are invited to summarize the key words and the most important definitions from presentation. | Skills | Whole <br> class Group work Pair work Individual work | Presentation$\mathrm{n}^{\circ} 1$ | Formative assessment |
|  |  |  |  | L S S R l |  |  |  |
|  |  |  |  | Key vocabulary <br> Vector/vectorial Scalar Resultant Arrow Tail |  |  |  |
|  |  |  |  | Communicative structures <br> A vector can be defined as ... The geometrical representation of a vector is.... |  |  |  |

## CLIL Lesson Plan

| Unit number | 1 | Lesson number | 2 | Title | Vectors: operations |
| :--- | :--- | :--- | :--- | :--- | :--- |





## CLIL Lesson Plan

```
Unit number 1 Lesson number 3
```

| Activity | Timing | Learning Outcomes | Activity Procedure | Language |  |  |  | Interaction | Materials | Assessment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 30 <br> minutes | Familiarization with the sum and difference of two vectors. All the results are given geometrically (drawing the vectors) and algebraically. | Teacher divides the class into five groups. Each group consists of four or five students. One of the students has the role to check if his/her schoolmates speak English. | Skills |  |  |  | Whole classGroup workPair workIndividual work | Worksheet $n^{\circ} 1$ (Sum and difference of vectors) | Formative assessment, teacher observes students' work Continuous assessment (teacher circulates around groups and gives further explanation of task if any student is not able to proceed ) |
|  |  |  |  | L | S | R | W |  |  |  |
|  |  |  |  | Key vocabulary <br> Application point Magnitude Resultant vector |  |  |  |  |  |  |
|  |  |  |  | Communicative structures <br> In my view, to calculate the magnitude is useful to remember... |  |  |  |  |  |  |


| 2 | 20 <br> minutes | Sum and difference of vectors | Under the supervision of the teacher, each group presents the solution of their allocated exercises and explains the procedure and the results. Group 1 is given exercises land 2. Group 2 is given exercises 3and 4. Group 3 is given exercises 5 and 6 . Group 4 is given exercises 7 | Skills |  |  |  | Whole <br> class Group work Pair work Individual work | Worksheet $n^{\circ} 1$ (Sum and difference of vectors) | Formative assessment, teacher observes students' solutions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | L | S | R | W |  |  |  |
|  |  |  |  | Key <br> Appl <br> Mag vect |  |  |  |  |  |  |
|  |  |  |  | Com <br> stru <br> Afte <br> we h <br> that <br> care <br> of v <br> reali |  | tive <br> our <br> side <br> loo <br> he <br> hav | deas <br> d <br> g <br> ture |  |  |  |

## CLIL Lesson Plan

| Unit number | 1 | Lesson number | 4 | Title | Exercises to practice vector operations (multiplication and division) related to lesson 1 and lesson |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Activity | Timing | Learning Outcomes | Activ | ity Pro | cedure | Language | Interaction | Materials | Assessment |
| 1 | $10$ <br> minutes | Sum and difference of vectors | Befor work stude to the work | assig <br> heet, <br> nts som <br> exerc <br> heet n | ing a new acher asks e questions related es of the 1 | Skills <br> Key vocabulary <br> Application point Magnitude Resultant vector <br> Communicative structures <br> Use of the third person singular Passive form: parallelogram law is used to... | Whole <br> class Group <br> work Pair work Individual work | Worksheet $n^{\circ} 1$ (Sum and difference of vectors) | Formative assessment, teacher listens to students' answers and corrects |


| 2 | $20$ <br> minutes | Algebraic and geometrical product and division of a number and a vector | Teacher divides the class into five groups, each group consists of four or five students. The groups are changed from the previous lesson. One of the students has the role to check if his/her schoolmates speak English. | Skil |  |  |  | Whole <br> class <br> G Group <br> work <br> Pair work <br> Individual work | Worksheet $n^{\circ} 2$ <br> (product and division of a number and a vector) | Formative assessment, teacher observes students'work Continuous assessment(teacher circulates around groups and gives further explanation of task if any student is not able to proceed) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | L | S | R | W |  |  |  |
|  |  |  |  | Key vocabulary <br> Application point Magnitude Resultant vector |  |  |  |  |  |  |
|  |  |  |  | Communicative structures <br> Opinion giving: In my opinion the correct method to calculate the product is... |  |  |  |  |  |  |
| 3 | $20$ <br> minutes | Product <br> and <br> division of <br> a number and a vector | Under the supervision of the teacher, each group presents the solution of some exercises and explains the procedure and the results. | Skills |  |  |  | Whole <br> class Group work Pair work Individual work | Worksheet $\mathrm{n}^{\circ} 2$ <br> (product and division of a number and a vector ) | Formative assessment, teacher observes students' solutions |
|  |  |  |  | L | S | R | W |  |  |  |
|  |  |  |  | Key vocabulary <br> Product Division |  |  |  |  |  |  |
|  |  |  |  | Communicative structures <br> After sharing our ideas we have considered that .... After looking carefully at the pictures of vectors we have realized that.... |  |  |  |  |  |  |

## CLIL Lesson Plan

| Unit number | 1 | Lesson number | 5 | Title | Components of a vector (task1+ task2) |
| :--- | :--- | :--- | :--- | :--- | :--- |


| Activity | Timing | Learning Outcomes | Activity Procedure | Language | Interaction | Materials | Assessment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 10 <br> minutes | Graphical magnitude of the components of a vector. Components of a vector and Pythagoras' theorem applied to components | Teacher uses whiteboard to introduce few slides of presentation $n^{\circ} 3$ in order to show the components of a vector and the right angled triangle to which Pythagoras' theorem can be applied | Skills | Whole <br> class Group <br> work Pair work Individual work | Presentation <br> $\mathrm{n}^{\circ} 3$ <br> (Components of a vector) |  |
|  |  |  |  | L S R R W |  |  |  |
|  |  |  |  | Key vocabulary <br> Components To drop a perpendicular Projection Intercept Decomposition of a vector |  |  |  |
|  |  |  |  | Communicative structures <br> A vector can be uniquely decomposed into a sum of two perpendiculars vectors. A vectors forms an angle with.... A component is preceded by a positive sign when....or a negative sign when.... |  |  |  |


| 2 | 15 <br> minutes | Use of Pythagoras' theorem with vectors | Teacher divides the class into couples, in order to accelerate the organization of the work, each students completes taskl one with his/her neighbour | Skills |  |  |  | Whole classGroup workPair workIndividual work | Task 1 of presentation $\mathrm{n}^{\circ} 3$ (Components of a vector) | Formative assessment, teacher observes students'work Continuous assessment(teacher circulates around couples of students and gives further explanation of task if any student is not able to proceed ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | L | S | R | W |  |  |  |
|  |  |  |  | Key vocabulary <br> Components of a vector To break up a vector |  |  |  |  |  |  |
|  |  |  |  | Communicative structures <br> A vector can be broken up into its components, graphically we have to.... <br> Pythsgoras'theorem can be applied whenever we deal with a right angled triangle |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |



| 4 | 20 <br> minutes | Practice of addition and subtraction of vectors by two dimensional components | Students complete task 2 | Skills |  |  |  | Whole <br> class Group work Pair work Individual work | Task 2 of presentation $\mathrm{n}^{\circ} 3$ | Formative assessment, teacher observes students'work Continuous assessment(teacher circulates around couples of students and gives further explanation of task if any student is not able to proceed ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | L | S | R | W |  |  |  |
|  |  |  |  | Key vocabulary <br> Component notations |  |  |  |  |  |  |
|  |  |  |  | Communicative structures <br> It is important to consider components that lie in the same direction... It is very easy to add vectors in component notation.... |  |  |  |  |  |  |

## CLIL Lesson Plan

| Unit number | 1 | Lesson number | 6 | Title | Vectors and trigonometry |
| :--- | :--- | :--- | :--- | :--- | :--- |


| Activity | Timing | Learning Outcomes | Activity Procedure | Language |  |  | Interaction | Materials | Assessment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5 minutes | Trigonometry <br> : equations used to determine the sides of a right angled triangle by means of cosine and sine functions | Teacher presents the first three slides of presentation $\mathrm{n}^{\circ} 3$ and asks students to deduce the content. In a few minutes they realize that material suggests how to calculate the length of a side of a right angled triangle and which equations should be used | Skil |  |  | Whole classGroup workPair workIndividual work | Presentation $n^{\circ} 3$ (trigonometry and direction of a vector, the first three slides) | Formative assessment (teacher listens to students' answers and their conclusion) |
|  |  |  |  | L | S | R W |  |  |  |
|  |  |  |  | Key vocabulary <br> Trigonometry Adjacent to Opposite the Ratio of....to |  |  |  |  |  |
|  |  |  |  | Com stru The relat meas acute | nuni ure ne/cos the urem angle | ative <br> sine function <br> nt of an to.... |  |  |  |



| 4 | 20 minutes | Calculation of the components of a vector using trigonometry | Students receive a photocopy containing task $3\left(n^{\circ} 3\right)$ of presentation $\mathrm{n}^{\circ} 3$. They work in pairs to complete exercises. Students find exercises quite demanding so they do not complete the last part of this task | Skills |  |  |  | Whole <br> class Group work Pair work Individual work | Task 3( $n^{\circ} 3$ ) of presentation $n^{\circ} 3$ (Components of a vector) | Formative assessment, teacher observes students'work Continuous assessment (teacher circulates around couples of students and gives further explanation of task if any student is not able to proceed) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | L | S | R | W |  |  |  |
|  |  |  |  | Key <br> To b | ocab eak up |  |  |  |  |  |
|  |  |  |  | Com stru <br> The <br> segm <br> angl <br> calcu <br> know |  | fa <br> a rig gle y | be |  |  |  |

## CLIL Lesson Plan

| Unit number | 1 | Lesson number | 7 | Title | Exercises to practice the resultant vector through the use of components (task 3) |
| :--- | :--- | :--- | :--- | :--- | :--- |



| 2 | 15 minutes | Practice of graphical and algebraic magnitude of the components of a vector | Teacher divides the class into five groups, each group consists of four or five students. The groups are different from previous lessons | Skills |  |  |  | Whole <br> class <br> Group <br> work <br> Pair work <br> Individual work | Task 3 | Formative assessment, teacher observes students'work |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | L | S | R | W |  |  |  |
|  |  |  |  | Key vocabulary <br> Components of a vector |  |  |  |  |  |  |
|  |  |  |  | Communicative structures |  |  |  |  |  |  |
| 3 | $5$ <br> minutes | Sum of any two vectors using their components | Most of students are not able to complete the exercise 4 of task 3 , so teacher gives further explanation | Skills |  |  |  | Whole classGroup workPair workIndividual work | $\begin{aligned} & \text { Task } 3 \text { (3 } \\ & \text { and 4) } \end{aligned}$ |  |
|  |  |  |  | L | S | R | W |  |  |  |
|  |  |  |  | Key vocabulary <br> Sum Components |  |  |  |  |  |  |
|  |  |  |  | Communicative structures |  |  |  |  |  |  |


| 4 | 25 <br> minutes | Practice of sum of any two vectors using their components | Students still in groups from before complete exercise 4 of tasks 3 | Skills |  |  |  | Whole <br> class Group work Pair work Individual work | Task 3 (3 and 4) | Formative Assessment (teacher circulates around couples of students and gives further explanation of task if any student is not able to proceed) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | L | S | R | W |  |  |  |
|  |  |  |  | Key vocabulary <br> Sum Components |  |  |  |  |  |  |
|  |  |  |  | Communicative structures <br> The sum of any two vectors can be determined by.... |  |  |  |  |  |  |

## CLIL Lesson Plan




## CLIL Lesson Plan

| Unit number | 1 | Lesson number | 9 | Title | Written test |
| :--- | :--- | :--- | :--- | :--- | :--- |



| 2 | 45 minutes | Difference between scalar and vector quantities. To draw vectors and their components To use parallelogram law to determine the resultant vector. Description of head to tail method Calculation of the components of a vector through the application of sine and cosine functions | Students complete their work answering the questions written on their worksheet, filling in the blanks and drawing the resultant vector, calculating algebraically the resultant vector | Skills |  |  |  | Whole <br> class Group work Pair work Individual work | Test 1 <br> supplied <br> by <br> teacher |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | L | S | R | W |  |  |  |
|  |  |  |  | Key vocabulary <br> Magnitude Direction Components Resultant vector Scalar and vector quantities |  |  |  |  |  |  |
|  |  |  |  | Communicative structures |  |  |  |  |  |  |

## CLIL Lesson Plan

| Unit number | 1 | Lesson number | 10 | Title | Check and correction of written test |
| :--- | :--- | :--- | :--- | :--- | :--- |



| 2 | 10 minutes | To distinguish scalar and vector quantities | Students explain what scalar and vector quantities are, how to distinguish them and then they give examples. At the end they analyze the elements of the third exercise and tell classmates why some quantities are scalar and others vector | Skills |  |  |  | Whole <br> class Group work Pair work Individual work | Test 1 <br> supplied <br> by <br> teacher | Formative assessment and teacher's observation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | L | S | R | W |  |  |  |
|  |  |  |  | Key vocabulary <br> Velocity Displacement <br> Volume Density Weight Mass |  |  |  |  |  |  |
|  |  |  |  | Communicative structures <br> Some quantities are said to be vector or scalar quantities if... |  |  |  |  |  |  |




## CLIL Lesson Plan

| Unit number | 2 | Lesson number | 1 | Title | Concept of force and spring force |
| :--- | :--- | :--- | :--- | :--- | :--- |


| Activity | Timing | Learning Outcomes | Activity Procedure | Language | Interaction | Materials | Assessment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 20 <br> minuts | The concept of force. <br> Resultant forces Elastic and solid bodies Spring force | Teacher uses whiteboard to introduce slides of presentation $n^{\circ} 4$ in order to show the concept of force, the difference between elastic and solid bodies and Hooke's law | Skills | Whole <br> class Group <br> work Pair work Individual work | - Presentation $n^{\circ} 4$ forces and Hooke's law.pdf |  |
|  |  |  |  | L |  |  |  |
|  |  |  |  | Key vocabulary <br> To exceed To exert To tolerate To be subjected to To apply Restoring Stiffness |  |  |  |
|  |  |  |  | Communicative structures |  |  |  |


| 2 | 30 <br> minutes | Practice of resultant force, spring force and Hooke's law | Teacher divides the class into five groups, each group consists of four or five students. The groups are different from previous lessons | Skills |  |  |  | Whole <br> class Group work Pair work Individual work | - Presentation $n^{\circ} 4$ forces and Hooke's law.pdf | Formative assessment, teacher observes students'work Continuous assessment (teacher circulates around groups of students and gives further explanation of task if any student is not able to proceed ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | L | S | R | W |  |  |  |
|  |  |  |  | Key vocabulary <br> To exceed To exert To tolerate To be subjected to To apply Restoring Stiffness |  |  |  |  |  |  |
|  |  |  |  | Communicative structures The resultant force is.. We can stretch or pull a spring and the force exerted can be calculated by.... The negative sign of Hooke's law tells us... |  |  |  |  |  |  |

## CLIL Lesson Plan

| Unit number | 2 | Lesson number | 2 | Title | Weight and mass |
| :--- | :--- | :--- | :--- | :--- | :--- |



| 2 | 15 <br> minutes | Practice of condition of equilibrium, spring force, and weight | Teacher divides the class into pairs to solve the last exercise of presentation $n^{\circ} 5$ | Skills |  |  |  | Whole classGroup workPair workIndividual work | - Presentation $n^{\circ} 5$ weight.pdf | Formative assessment, teacher observes students'work Continuous assessment (teacher circulates around groups of students and gives further explanation of task if any student is not able to proceed) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | L | S | R | W |  |  |  |
|  |  |  |  | Key vocabulary <br> Equilibrium <br> Gravitational acceleration constant Point mass Resultant force |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | Communicative structures <br> A point of mass is said to be in equilibrium if.... The resultant force is.... |  |  |  |  |  |  |
| 3 | $15$ <br> minutes | Steps to solve <br> a problem related to condition of equilibrium, spring force, and weight | On confirming that students are able to solve the exercise partially, teacher gives them the solution explaining all the steps to follow and answers students' questions | Skills |  |  |  | Whole <br> class Group work Pair work Individual work | - Worksheet $n^{\circ} 4$ of presentation n5.pdf |  |
|  |  |  |  | L | S | R | W |  |  |  |
|  |  |  |  | Key vocabulary <br> Condition of quilibrium Resultant force |  |  |  |  |  |  |
|  |  |  |  | Communicative structures |  |  |  |  |  |  |

## CLIL Lesson Plan

| Unit number | 2 | Lesson number | 3 | Title | Exercises to consolidate understanding of force and spring force |
| :--- | :--- | :--- | :--- | :--- | :--- |


| Activity | Timing | Learning Outcomes | Activity Procedure | Language |  |  | Interaction | Materials | Assessment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5 minutes | Comprehension of activity instructions | Teacher divides the class into five groups, each group consists of four or five students and then assigns the worksheet | Skills |  |  | Whole <br> class Group work Pair work Individual work | $\quad$ - Worksheet$n^{\circ} 5$$\quad$ Hooke's$\quad$ law$\quad$ practice.pdfWorksheet $n^{\circ} 5$Hooke's lawpractice takenfrom link |  |
|  |  |  |  | L S | R | W |  |  |  |
|  |  |  |  | Key vocabulary <br> See lesson 12 |  |  |  |  |  |
|  |  |  |  | Communicative structures |  |  |  |  |  |


| 2 | $35$ <br> minutes | Spring force: <br> Hooke's law <br> Direct <br> proportionality <br> of the <br> extension of a <br> spring and <br> spring force | Students solve the exercises of the supplied worksheet from number 1 to number 13 (apart from exercises 3 and 5 that will be solved during the lesson 15) | Skil |  |  |  | Whole classGroup workPair workIndividual work | - Worksheet | Formative |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | L | S | R | W |  | Hooke's | observes |
|  |  |  |  | Key vocabulary <br> Resting position Spring constant To stretch To deform |  |  |  |  | practice.pdf <br> Worksheet $\mathrm{n}^{\circ} 5$ <br> Hooke's law | Continuous assessment (teacher circulates around groups of students |
|  |  |  |  | Communicative structures <br> TWe have to apply Hooke's law equation to determine.... |  |  |  |  | from link | explanation of task if any student is not able to proceed ) |
| 3 | $10$ <br> minutes | Checking results | Two groups repeat the solutions of the exercises 1,2,4,7,13. on the whiteboard | Skills |  |  |  | Whole <br> class <br> Group <br> work <br> Pair work <br> Individual work | - Worksheet $n^{\circ} 5$ <br> Hooke's law practice.pdf <br> Worksheet $n^{\circ} 5$ <br> Hooke's law practice taken from link | Formative assessment: teacher listens to students'explanation |
|  |  |  |  | L | S | R | W |  |  |  |
|  |  |  |  | Key vocabulary <br> Resting position Spring constant To stretch To deform |  |  |  |  |  |  |
|  |  |  |  | Communicative structures <br> To calculate the spring constant.... Hooke's law equation permits us to determine.... Thanks to the graph extension/spring force we discovered that.... |  |  |  |  |  |  |

## CLIL Lesson Plan

| Unit number | 2 | Lesson number | 4 | Title | Friction |
| :--- | :--- | :--- | :--- | :--- | :--- |


| Activity | Timing | Learning Outcomes | Activity Procedure | Language | Interaction | Materials | Assessment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $15$ <br> minutes | The concepts of friction Differences between static, kinetic and rolling friction Equation to find the frictional force | Teacher uses whiteboard to introduce the slides of presentation $\mathrm{n}^{\circ} 6$ in order to introduce when friction occurs and the different types of friction | Skills | 回 Whole <br> class Group work Pair work Individual work | - Presentation $n^{\circ} 6$ friction.pdf |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  | Key vocabulary |  |  |  |
|  |  |  |  | Key vocabulary Static friction Kinetic friction Rolling friction The coefficient of static friction Smooth Rough |  |  |  |
|  |  |  |  | Communicative structures <br> Frictional force occurs whenever we try to slide one body over another body |  |  |  |


| 2 | $25$ <br> minutes | Practice of frictional force | With teacher assistance students look at an example of the first exercise on the worksheet and gives some instructions to solve in pair the following three exercises of the worksheet | Skills |  |  |  | Whole classGroup workPair workIndividual work | - Worksheet $n^{\circ} 5$ of presentation $n^{\circ} 6$ friction.pdf | Formative <br> assessment, teacher observes <br> students'work Continuous assessment (teacher circulates around groups of students and gives further explanation of task if any student is not able to proceed ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | L | S | R | W |  |  |  |
|  |  |  |  | Key vocabulary <br> Force diagram Coefficient of kinetic friction Normal force |  |  |  |  |  |  |
|  |  |  |  | Communicative structures |  |  |  |  |  |  |
| 3 | 10 minutes | Check the solution of exercises | Using whiteboard, pairs of students present the solution of the exercises and give explanation to their classmates who check their own results. | Skills |  |  |  | Whole classGroup workPair workIndividual work | - Worksheet $n^{\circ} 5$ of presentation $n^{\circ} 6$ friction.pdf | Formative assessment, teacher observes students'explanation |
|  |  |  |  | L | S | R | W |  |  |  |
|  |  |  |  | Key vocabulary <br> Force diagram Coefficient of kinetic friction Normal force |  |  |  |  |  |  |
|  |  |  |  | Communicative structures <br> The force diagram consists of... The forces applied on a body depend on.... |  |  |  |  |  |  |

## CLIL Lesson Plan

| Unit number | 2 | Lesson number | 5 | Title | Comprehension check of weight and mass, frictional force |
| :--- | :--- | :--- | :--- | :--- | :--- |




| 4 | 5 minutes | Comprehension of activity instructions | Teacher assigns the worksheet $n^{\circ} 6$ Students are still in groups as previous lesson | Skills |  |  | Whole <br> class Group work Pair work Individual work | - Worksheet $n^{\circ} 7$ <br> friction.pdf <br> Worksheet $\mathrm{n}^{\circ} 7$ friction taken from link + link |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | L S | R | W |  |  |  |
|  |  |  |  | Key vocabulary <br> Coefficient of static/kinetic friction Force diagram To apply a force Rough Smooth |  |  |  |  |  |
|  |  |  |  | Communicative structures |  |  |  |  |  |


| 5 | $35$ <br> minutes | To calculate the coefficient of static /kinetic friction To draw a force diagram Appreciation of different forces acting on two surfaces in contact (smooth or rough) | Students solve the exercises of the supplied worksheet $n^{\circ} 7$ (from number 1 to number 6) | Skills |  |  |  | Whole classGroup workPair workIndividual work | - Worksheet $n^{\circ} 7$ <br> friction.pdf <br> Worksheet $n^{\circ} 7$ <br> friction taken <br> from link + link | Formative assessment, teacher observes students'work Continuous assessment (teacher circulates around groups of students and gives further explanation of task if any student is not able to proceed ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | L | S | R | W |  |  |  |
|  |  |  |  | Key vocabulary <br> Coefficient of static/kinetic friction Force diagram To apply a force Rough Smooth |  |  |  |  |  |  |
|  |  |  |  | Communicative structures <br> To draw a force diagram we have to consider all the forces acting on.... Drawing a diagram force helps to find correctly the data of a problem |  |  |  |  |  |  |
| 6 | $10$ <br> minutes | Check the solution of exercises | Using whiteboard, pairs of students give answers with an explanation to their classmates who check their own results. | Skills |  |  |  | Whole <br> class Group <br> work Pair work Individual work | - Worksheet | Formative |
|  |  |  |  | L | S | R | W |  | friction.pdf | listens to students' |
|  |  |  |  | Key vocabulary <br> Coefficient of static/kinetic friction Force diagram To apply a force Rough Smooth |  |  |  |  | Worksheet $\mathrm{n}^{\circ} 7$ <br> friction taken <br> from link + link |  |
|  |  |  |  | Communicative structures |  |  |  |  |  |  |

## CLIL Lesson Plan

| Unit number | 2 | Lesson number | 6 | Title | Equilibrium of a particle: introduction |
| :--- | :--- | :--- | :--- | :--- | :--- |


| Activity | Timing | Learning Outcomes | Activity Procedure | Language | Interaction | Materials | Assessment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $15$ <br> minnutes | Definition of a particle. Equilibrium: conditions Equilibrium of a body on a horizontal plane. | Teacher uses whiteboard to introduce slides of presentation $n^{\circ} 7$ in order to show the concept of equilibrium | Skills | Whole <br> class Group work Pair work Individual work | - Presentation $n^{\circ} 7$ equilibrium of a particle.pdf |  |
|  |  |  |  | L S P R R |  |  |  |
|  |  |  |  | Key vocabulary |  |  |  |
|  |  |  |  | Particle Concurrent forces The resultant of all forces Horizontal plane |  |  |  |
|  |  |  |  | Communicative structures |  |  |  |


| 2 | $30$ <br> minutes | To draw a force diagram of a body on a horizontal plane The condition of equilibrium To find the magnitude of the frictional force between a horizontal plane and a body | Students solves exercises $\mathrm{n} 10,11$ of worksheet $n^{\circ} 7$ and the first two exercises of worksheet $\mathrm{n}^{\circ} 8$ | Skills |  |  |  | Whole <br> class Group work Pair work Individual work | - Worksheet $n^{\circ} 7$ friction.pdf <br> - Worksheet $n^{\circ} 8$ equilibrium and body on an inclined plane.pdf <br> - Presentation $n^{\circ} 7$ equilibrium of a particle.pdf | Formative assessment, teacher observes students'work Continuous assessment (teacher circulates around |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | L | S | R | W |  |  |  |
|  |  |  |  | Key vocabulary <br> Horizontal plane Rough plane To be on the point of slipping Coefficient of friction |  |  |  |  |  |  |
|  |  |  |  | Communicative structures <br> To solve a problem is useful to draw a system of concurrent forces acting on a body. We usually apply an ideal model to.... |  |  |  |  |  | groups of students and gives further explanation of task if any student is not able to proceed ) |



## CLIL Lesson Plan

| Unit number | 2 | Lesson number | 7 | Title | Body on an inclined plane |
| :--- | :--- | :--- | :--- | :--- | :--- |


| Activity | Timing | Learning Outcomes | Activity Procedure | Language | Interaction | Materials | Assessment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 15 <br> minutes | Equilibrium of a body on an inclined plane | Teacher uses whiteboard to introduce the last six slides of presentation $n^{\circ} 7$ in order to show the concept of equilibrium a body on an inclined plane and to consider all the forces acting on it. | Skills | Whole <br> class Group work Pair work Individual work | - Presentation $n^{\circ} 7$ equilibrium of a particle.pdf |  |
|  |  |  |  | L S R R ( W |  |  |  |
|  |  |  |  | Key vocabulary |  |  |  |
|  |  |  |  | Inclined plane To break up forces Components of a force |  |  |  |
|  |  |  |  | Communicative structures <br> An inclined plane is.... |  |  |  |


| 2 | $10$ <br> minutes | To draw a force diagram of a body on an inclined plane | Teacher solves the first example of presentation $n^{\circ} 7$ in order to show how to draw a force diagram and how to apply the condition of equilibrium | Skill |  |  |  | 回 Whole | - Presentation |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | L | S | R | W | $\square$ Group | equilibrium |  |
|  |  |  |  | Key vocabulary <br> Smooth Rough |  |  |  | Pair work <br> $\square$ Individual | particle.pdf |  |
|  |  |  |  | Communicative structures |  |  |  | work |  |  |
| 3 |  |  |  |  |  |  |  |  | - Presentation $n^{\circ} 7$ equilibrium of a particle.pdf | Formative assessment, teacher observes students'work Continuous assessment (teacher circulates around pairs of students and gives further explanation of task if any student is not able to proceed ) |
|  |  |  |  |  |  |  |  | Group |  |  |
|  |  |  |  |  |  |  |  | Pair work <br> Individual work |  |  |
|  |  |  |  |  |  |  |  |  |  |  |


| 4 | 10 <br> minutes | Check the solution | Using whiteboard, a pair of students answers the exercise and give explanation to their classmates who check their own results and check also the result of the first exercises of worksheet $\mathrm{n}^{\circ} 8$ | Skills |  |  |  | Whole <br> class Group work Pair work Individual work | - Worksheet $n^{\circ} 8$ equilibrium and body on an inclined plane.pdf <br> - Presentation $n^{\circ} 7$ equilibrium of a particle.pdf | Formative assessment, teacher listens to students' explanation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | L | S | R | W |  |  |  |
|  |  |  |  | Key vocabulary <br> Block To weigh Plank Coefficient of static friction |  |  |  |  |  |  |
|  |  |  |  | Communicative structures <br> After considering all the forces acting on a body, we introduce a reference frame to consider the components of forces along the x and y axes |  |  |  |  |  |  |

## CLIL Lesson Plan



| 2 | 35 <br> minutes | Practice of equilibrium of a body on an inclined plane | Students solve the exercises 3, 4, 5, 6 and 7 of the supplied worksheet $\mathrm{n}^{\circ} 8$ | Skills |  |  |  | Whole <br> class Group work Pair work Individual work | - Worksheet $n^{\circ} 8$ equilibrium and body on an inclined plane.pdf <br> Worksheet $\mathrm{n}^{\circ} 8$ inclined plane | Formative assessment, teacher observes students'work Continuous assessment (teacher circulates around groups of students and gives further explanation of task if any student is not able to proceed ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | L | S | R | W |  |  |  |
|  |  |  |  | Key vocabulary <br> Inclined plane Equilibrium Normal force Weight Length Height To spklit |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | Communicative structures <br> After introducing a frame reference, we have to split the forces along the perpendicular and parallel direction... The condition of equilibrium tells us that the resultant of the forces acting on.... |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |


| 3 | 10 minutes | Revision of equilibrium of a body on an inclined plane | Using whiteboard, pairs of students present the solution of the first three exercises and give explanation to their classmates who check their own results. | Skills |  |  |  | Whole classGroup workPair workIndividual work |  | Formative assessment, teacher listens to students' explanation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | L | S | R | W |  |  |  |
|  |  |  |  | Key vocabulary Inclined plane Equilibrium Normal force Weight Length Height |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | Communicative structures |  |  |  |  |  |  |

## CLIL Lesson Plan

| Unit number |  | 2 | Lesson number | $9 \quad$ Title | Recap: forces as vectors |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Activity | Timing | Learning Outcomes | Activity Procedure | Language | Interaction | Materials | Assessment |
| 1 | $10$ <br> minutes | Forces: <br> Hooke's Iaw Normal force Weight Static friction force Kinetic friction force Equilibrium | Students review the pages on fo9rces of the book Physics: Eleonora Anzola Silvia Anzola Ed Zanichelli then, in turn, teacher asks students to answer the questions related to the points of learning outcomes | Skills <br> Key vocabulary <br> Interaction Components of a force Opposite To oppose Deformation Spring <br> Communicative structures <br> Elastic force is a force from the deformation of a body....its direction and magnitude are found by.... Friction is the force that opposes the motion of objects sliding.... Any object is in equilibrium when .... | Whole <br> class <br> Group <br> work <br> Pair work <br> Individual work | - Zanichelli recap 2.pdf <br> Recap 2 taken from Physics: Eleonora Anzola Silvia Anzola Ed Zanichelli Pag 68 Slides and notes (elastic force and Hooke's law, equilibrium) Pag 70,71 Concept map | Formative assessment, teacher listens to students' answers |


| 2 | 30 minutes | Practice of Hooke's law normal force weight static friction force kinetic friction force Equilibrium | Students use their text book to solve exercises on pag 74 . They work in pairs to complete exercises | Skills |  |  |  | Whole classGroup workPair workIndividual work | $\begin{aligned} & \quad \begin{array}{l} \text { • Zanichelli } \\ \text { recap } \\ \text { 2.pdf } \end{array} \\ & \text { Recap } 2 \text { Taken } \\ & \text { from Physics: } \\ & \text { Eleonora Anzola } \\ & \text { Silvia Anzola Ed } \\ & \text { Zanichelli Pag } \\ & 74 \text { (multiple } \\ & \text { choice exercise } \\ & 5 \text { and } 6 \text { are } \\ & \text { escluded) Pag } \\ & 76 \text { exercises } \\ & \text { (n¹) } \end{aligned}$ | Formative assessment, teacher observes students'work Continuous assessment (teacher circulates around pairs of students and gives further explanation of task if any student is not able to proceed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | L | S | R | W |  |  |  |
|  |  |  |  | Key vocabulary <br> Compression, extension, friction to exert At rest |  |  |  |  |  |  |
|  |  |  |  | Communicative structures <br> Hooke' law states that an ideal spring exerts a force proportional to.... A friction force is created whenever two surfaces move or try to move across each other , it always acts..... The normal force is perpendicular to the surface..... |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |


| 3 | $10$ <br> minutes | Check the answers of exercises | Using whiteboard, pairs of students present the solution of the exercises and give explanation to their classmates who check their own results. | Skills |  |  |  | Whole <br> class Group work Pair work Individual work | - Zanichelli recap 2.pdf <br> Recap. 2 - <br> Taken from Physics: <br> Eleonora Anzola Silvia Anzola Ed Zanichelli Pag 74 (multiple choice exercise 5and 6 are escluded) Pag 76 exercises ( $\mathrm{n}^{\circ} 1$ ) | Formative assessment, teacher listens to students' explanation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | L | S | R | W |  |  |  |
|  |  |  |  | Key vocabulary <br> Compression, extension, friction to exert At rest |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | Communicative structures |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |

## CLIL Lesson Plan

| Unit number | 2 | Lesson number | 10 | Title | Written test |
| :--- | :--- | :--- | :--- | :--- | :--- |



| 2 | 45 <br> minutes | Differences between elastic and solid bodies. Forces as vectors. To draw a force diagram. Condition of equilibrium of a body. Differences between mass and weight. Spring force. Calculation of forces acting on a horizontal and on an inclined plane. | Students complete their work answering the questions written on their worksheet, filling in the blanks and solving the exercises. | Skills |  |  |  | Whole <br> class Group work Pair work Individual work | Formative assessment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | L | S | R | W |  |  |
|  |  |  |  | Key vocabulary |  |  |  |  |  |
|  |  |  |  | Communicative structures |  |  |  |  |  |

