Fundamentals of Dynamics

Would you like to refresh your knowledge of the Laws of motion?
 Opzione 1}

Does Newton's 1 st Law require velocity to be parallel to the
3 points applied force? *YesNoIt depends on how great is the massIt depends on the force type

Correct answer
(No

Feedback for correct answers
correct
Feedback for incorrect answers
incorrect

When an object's velocity is zero, can there be forces upon the object? *YesNoYes, but non strong enough to cause motionWe can't say

Correct answer

(-) Yes

Feedback for correct answers
correct
Feedback for incorrect answers
uncorrect

```
The SI unit for acceleration is *
```\(\mathrm{m} / \mathrm{s}\)
```

```
 m/s^2
```

```
 kg*m/s^2
```

Correct answer
( $\mathrm{m} / \mathrm{s}^{\wedge} 2$

Feedback for correct answers
correct
Feedback for incorrect answers
uncorrect

The SI unit for force is equivalent to *$\mathrm{m} / \mathrm{kg}$$\mathrm{m} / \mathrm{s}$$\mathrm{m} / \mathrm{s}^{\wedge} 2$$\mathrm{kg} * \mathrm{~m} / \mathrm{s}^{\wedge} 2$

Correct answer
( $\mathrm{kg}^{\star} \mathrm{m} / \mathrm{s}^{\wedge} 2$

Feedback for correct answers
correct
Feedback for incorrect answers
uncorrect

In the expression "balanced object", what does "balanced" refer to? *$v=0$$a=0$Sum of forces $=0 \mathrm{~N}$homogeneous density

## Correct answers

(-) $a=0$
(-) Sum of forces $=0 \mathrm{~N}$

Feedback for correct answers
correct
Feedback for incorrect answers uncorrect

## What is Newton's 3rd law?

$F=m$ * $a$Object at rest or in motion stay at rest or in motion unless acted on by an outside forceAs the speed of a falling object increases, air resistance increasesWhen one body exerts a force on a second body, the second body simultaneously exerts a force equal in magnitude and opposite in direction on the first body.

## Correct answer

( When one body exerts a force on a second body, the second body simultaneously exerts a force equal in magnitude and opposite in direction on the first body.

Feedback for correct answers
correct
Feedback for incorrect answers
uncorrect
A 30 kg block with a velocity of $50 \mathrm{~m} / \mathrm{s}$ is encountering aconstant 8 N friction force. What is the acceleration? *$6 \mathrm{~m} / \mathrm{s}^{\wedge} 2$$0.26 \mathrm{~m} / \mathrm{s}^{\wedge} 2$$24 \mathrm{~m} / \mathrm{s}^{\wedge} 2$$6.24 \mathrm{~m} / \mathrm{s}^{\wedge} 2$
Correct answer

- $0.26 \mathrm{~m} / \mathrm{s}^{\wedge} 2$
Feedback for correct answers
correct
Feedback for incorrect answers
uncorrect

```
A 30 kg block with a velocity of 50 m/s is encountering a 3 points constant 8 N friction force. How long does it takes the block to stop? *
```

```\(12^{\prime \prime} 6^{\prime \prime}\)
```

```\(58 "\)
```

```\(240 "\)
```

```6' 12 "
```


## Correct answer

```
(-) \(6^{\prime \prime} 12^{\prime \prime}\)
Feedback for correct answers
Correct
Feedback for incorrect answers
Uncorrect
```

